concat_op.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
P
phlrain 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17
#include <string>
18 19
#include <vector>

P
phlrain 已提交
20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

24 25
namespace paddle {
namespace operators {
26
using Tensor = framework::Tensor;
27 28 29 30 31

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
  void InferShape(framework::InferShapeContext *ctx) const override {
33 34
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "Concat");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Concat");
35

36
    auto inputs_dims = ctx->GetInputsDim("X");
37

38
    const size_t inputs_num = inputs_dims.size();
39 40 41 42 43
    PADDLE_ENFORCE_GT(
        inputs_num, static_cast<size_t>(0),
        platform::errors::InvalidArgument(
            "The number of input tensors in concat op should > 0. But "
            "received inputs' length is 0."));
44
    if (inputs_num == 1) {
45 46
      VLOG(3) << "Warning: concat op have only one input, may waste memory";
    }
47

48 49 50 51 52 53 54 55 56 57 58 59 60
    if (ctx->HasInput("AxisTensor")) {
      auto out_dims =
          framework::make_ddim(std::vector<int>(inputs_dims[0].size(), -1));
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      size_t axis =
          ComputeAxis(static_cast<int64_t>(ctx->Attrs().Get<int>("axis")),
                      static_cast<int64_t>(inputs_dims[0].size()));
      framework::DDim out_dims =
          ComputeAndCheckShape(ctx->IsRuntime(), inputs_dims, axis);
      if (out_dims[axis] < 0) {
        out_dims[axis] = -1;
61
      }
62 63
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
64 65
    }
  }
P
phlrain 已提交
66 67 68 69

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
70
    auto inputs = ctx.MultiInput<Tensor>("X");
71 72
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
73 74 75
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
        input_data_type = input->type();
76 77 78 79 80 81 82
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
      PADDLE_THROW("All Inputs of Concat OP are Empty!");
    }
P
phlrain 已提交
83 84 85 86 87 88 89 90 91
#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
92 93 94 95 96 97 98 99 100 101

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
102 103 104 105
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
106
  void Make() override {
107 108
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
109 110 111 112
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
        .SetDefault(false);
113
    AddAttr<int>("axis",
114 115 116 117
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
118
        .SetDefault(0);
119 120 121 122 123 124
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
125 126 127 128
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
129
        .SetDefault(false);
130 131 132 133 134
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
135 136 137 138 139 140 141 142 143 144 145 146 147
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
148 149 150
  }
};

151 152
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
153
  using framework::OperatorWithKernel::OperatorWithKernel;
154

155
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
156 157 158
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
159 160

    ctx->ShareAllLoD(in_x, out_x_g_n);
161
  }
P
phlrain 已提交
162 163 164 165

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
166 167 168
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
P
phlrain 已提交
169
  }
170 171 172 173 174 175 176 177 178 179

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
180 181
};

182
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
183

H
hong 已提交
184 185
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
186
 public:
H
hong 已提交
187
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
188 189

 protected:
190
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
191
    op->SetType("concat_grad");
H
hong 已提交
192
    op->SetInput("X", this->Input("X"));
H
hong 已提交
193 194 195
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
196 197 198
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
199
  }
200 201
};

202 203 204 205
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
206
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
207 208
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>);
P
phlrain 已提交
209
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
210
                  ops::ConcatOpGradNoNeedBufferVarInferer);
C
chengduoZH 已提交
211
REGISTER_OP_CPU_KERNEL(
212 213
    concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>,
214
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, bool>,
215
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int64_t>,
216 217
    ops::ConcatKernel<paddle::platform::CPUDeviceContext,
                      paddle::platform::float16>,
218
    ops::ConcatKernel<paddle::platform::CPUDeviceContext, int>);
C
chengduoZH 已提交
219 220
REGISTER_OP_CPU_KERNEL(
    concat_grad,
221 222
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
223
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, bool>,
224
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
225 226
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>,
227
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>);