softmax_op.cc 3.5 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

15
#include "paddle/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
 protected:
D
dongzhihong 已提交
25
  void InferShape(const framework::InferShapeContext &ctx) const override {
26
    PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
C
caoying03 已提交
27
                   "The input of softmax op must be a matrix.");
28 29
    ctx.Output<framework::LoDTensor>("Y")->Resize(
        ctx.Input<Tensor>("X")->dims());
30 31 32
  }
};

D
dongzhihong 已提交
33
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
34
 public:
D
dongzhihong 已提交
35 36
  SoftmaxOpMaker(framework::OpProto *proto,
                 framework::OpAttrChecker *op_checker)
37
      : OpProtoAndCheckerMaker(proto, op_checker) {
38
    AddInput("X",
C
caoying03 已提交
39 40
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
41
    AddOutput("Y", "The normalized values with the same shape as X.");
C
caoying03 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
    AddComment(R"DOC(
The input of softmax operator is a 2-D tensor with shape N x K (N is the
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
values in the range [0, 1] that add up to 1. Specifically, it computes the
exponential of the given dimension and the sum of exponential values of all
the other dimensions in the K-dimensional vector input. Then the ratio of the
exponential of the given dimension and the sum of exponential values of all
the other dimensions is the output of the softmax operator.

55 56
For each row `i` and each column `j` in input X, we have:
    Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))
C
caoying03 已提交
57 58

)DOC");
59 60 61
  }
};

D
dongzhihong 已提交
62
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
63 64 65
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

66
 protected:
D
dongzhihong 已提交
67
  void InferShape(const framework::InferShapeContext &ctx) const override {
68 69 70 71 72 73 74
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should be not null.");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
                            "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("Y")->dims(),
                      ctx.Input<Tensor>(framework::GradVarName("Y"))->dims(),
                      "Input(Y) and its gradients should have a same shape.");

75
    ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
76
        ->Resize(ctx.Input<Tensor>("X")->dims());
D
dongzhihong 已提交
77 78 79
  }
};

80 81 82
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
83
namespace ops = paddle::operators;
D
dongzhihong 已提交
84

85 86
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
87 88 89 90
REGISTER_OP_CPU_KERNEL(softmax,
                       ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);