executor.cc 18.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
S
sneaxiy 已提交
16
#include <deque>
17
#include <memory>
18
#include <unordered_map>
19
#include <unordered_set>
S
sneaxiy 已提交
20
#include <utility>
D
dongdaxiang 已提交
21 22 23
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
Y
Yi Wang 已提交
24 25 26 27 28
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
D
dongdaxiang 已提交
29 30
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
31
#include "paddle/fluid/framework/transfer_scope_cache.h"
W
Wang Guibao 已提交
32
#include "paddle/fluid/framework/variable_helper.h"
Z
Zeng Jinle 已提交
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
34
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
W
Wu Yi 已提交
36
#include "paddle/fluid/operators/distributed/distributed.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
38
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
39

40
#ifdef PADDLE_WITH_NGRAPH
B
baojun 已提交
41
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
42 43
#endif

D
dzhwinter 已提交
44
DECLARE_bool(benchmark);
45
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
46
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
Q
qijun 已提交
47 48 49

namespace paddle {
namespace framework {
X
Xin Pan 已提交
50 51 52 53 54
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
55

Q
Qiao Longfei 已提交
56
ExecutorPrepareContext::ExecutorPrepareContext(
S
sneaxiy 已提交
57 58 59 60 61
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
Z
Zeng Jinle 已提交
62 63 64 65 66 67 68 69 70 71 72
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    // FIXME(zjl): There is difference when ngraph and gc are both enabled
    // in unittests. I do not know why it happens. Maybe ngraph engine
    // would cache some variables?
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, garbage collection strategy is "
           "disabled in Executor";
    force_disable_gc = true;
  }
#endif
S
sneaxiy 已提交
73 74 75
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
S
sneaxiy 已提交
76
  }
Z
Zeng Jinle 已提交
77 78 79 80

  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
81 82 83
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
Z
Zeng Jinle 已提交
84
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
85
        prog_, block_id_, ops_);
Z
Zeng Jinle 已提交
86
  }
S
sneaxiy 已提交
87
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
S
sneaxiy 已提交
88
}
Y
Yu Yang 已提交
89

Q
Qiao Longfei 已提交
90
ExecutorPrepareContext::~ExecutorPrepareContext() {
M
minqiyang 已提交
91
  VLOG(5) << "destroy ExecutorPrepareContext";
Q
Qiao Longfei 已提交
92
}
Y
Yu Yang 已提交
93

D
dzhwinter 已提交
94
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
95

Y
Yancey1989 已提交
96
void Executor::Close() {
W
Wu Yi 已提交
97
#ifdef PADDLE_WITH_DISTRIBUTE
W
Wu Yi 已提交
98 99
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
100 101 102
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
W
Wu Yi 已提交
103
#endif
Y
Yancey1989 已提交
104
}
W
Wu Yi 已提交
105

L
Liu Yiqun 已提交
106 107 108
void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);
109 110 111 112 113 114 115 116 117 118 119 120 121 122

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
123
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
124 125
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
126 127
      } else {
        auto* ptr = scope->Var(var->Name());
128
        InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
129 130
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
131 132 133 134 135
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
136
      InitializeVariable(ptr, var->GetType());
M
minqiyang 已提交
137 138
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
139 140 141 142
    }
  }
}

D
dongdaxiang 已提交
143
void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
X
xujiaqi01 已提交
144
                              Dataset* dataset,
D
dongdaxiang 已提交
145
                              const std::string& trainer_desc_str) {
D
dongdaxiang 已提交
146 147
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
H
hutuxian 已提交
148 149 150
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
  PADDLE_ENFORCE(success, "Fail to parse TrainerDesc from string:\n%s",
                 trainer_desc_str.c_str());
D
dongdaxiang 已提交
151 152 153 154 155 156 157 158
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
D
dongdaxiang 已提交
159
  trainer->SetScope(scope);
D
dongdaxiang 已提交
160 161 162 163 164 165 166 167 168 169 170 171
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  return;
}
D
dongdaxiang 已提交
172

Y
Yu Yang 已提交
173
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
S
sneaxiy 已提交
174 175 176
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
X
Xin Pan 已提交
177
  platform::RecordBlock b(block_id);
178
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
S
sneaxiy 已提交
179
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
Q
Qiao Longfei 已提交
180
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
181 182
}

183 184 185 186 187 188 189
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
190
    const BlockDesc& block,
L
Liu Yiqun 已提交
191
    const std::map<std::string, const LoDTensor*>& feed_targets,
192 193
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
194
  for (auto* op : block.AllOps()) {
195 196
    if (op->Type() == kFeedOpType) {
      feed_count++;
L
Liu Yiqun 已提交
197
      // The input variable's name of feed_op should be feed_holder_name.
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

213
    if (!feed_holder_name.empty()) {
L
Liu Yiqun 已提交
214
      // When feed operator are present, so should be feed_holder.
215 216 217 218 219 220 221
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
222 223 224 225 226 227 228 229 230 231 232 233
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
L
Liu Yiqun 已提交
234 235
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
236 237
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
238
  for (auto* op : block.AllOps()) {
239 240
    if (op->Type() == kFetchOpType) {
      fetch_count++;
L
Liu Yiqun 已提交
241
      // The output variable's name of fetch_op should be fetch_holder_name.
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

257
    if (!fetch_holder_name.empty()) {
L
Liu Yiqun 已提交
258
      // When fetch operator are present, so should be fetch_holder.
259 260 261 262 263 264 265
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
266 267 268 269 270
  }

  return fetch_count > 0;
}

271 272 273
std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
274
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
275 276
}

277
void Executor::Run(const ProgramDesc& program, Scope* scope,
278 279
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
W
Wu Yi 已提交
280 281
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
282
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
283
  platform::RecordBlock b(kProgramId);
284
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
285
  bool has_feed_ops =
286
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
287
  bool has_fetch_ops =
288
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);
289 290

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
S
sneaxiy 已提交
291
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
292
  if (!has_feed_ops || !has_fetch_ops) {
S
sneaxiy 已提交
293 294
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
295
  }
296 297
  auto* global_block = copy_program->MutableBlock(0);

298
  if (!has_feed_ops) {
299 300
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
301
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
302 303 304
    feed_holder->SetPersistable(true);

    int i = 0;
305
    for (auto& feed_target : (*feed_targets)) {
306
      std::string var_name = feed_target.first;
M
minqiyang 已提交
307
      VLOG(3) << "feed target's name: " << var_name;
308 309 310 311 312 313 314 315 316 317 318 319 320

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

321
  if (!has_fetch_ops) {
322 323
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
324
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
325 326 327
    fetch_holder->SetPersistable(true);

    int i = 0;
328
    for (auto& fetch_target : (*fetch_targets)) {
329
      std::string var_name = fetch_target.first;
M
minqiyang 已提交
330
      VLOG(3) << "fetch target's name: " << var_name;
331 332 333 334 335 336 337 338 339 340 341 342 343

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

344
  auto ctx = Prepare(*copy_program, 0);
W
Wu Yi 已提交
345 346 347
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
348 349
}

Q
Qiao Longfei 已提交
350
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
351
    const ProgramDesc& program, int block_id,
S
sneaxiy 已提交
352
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
S
sneaxiy 已提交
353 354
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
Y
Yu Yang 已提交
355 356 357 358 359
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
360
#ifdef PADDLE_WITH_NGRAPH
361
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
362 363 364 365
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
S
sneaxiy 已提交
366
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
Q
Qiyang Min 已提交
367
  return ctx;
Y
Yu Yang 已提交
368 369
}

T
refine  
typhoonzero 已提交
370
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
S
fix bug  
sneaxiy 已提交
371
    const ProgramDesc& program, const std::vector<int>& block_ids,
S
sneaxiy 已提交
372 373
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
S
fix bug  
sneaxiy 已提交
374 375 376 377
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
T
typhoonzero 已提交
378
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
S
fix bug  
sneaxiy 已提交
379
  size_t idx = 0;
T
typhoonzero 已提交
380 381
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
S
sneaxiy 已提交
382
    auto* ctx = new ExecutorPrepareContext(program, bid);
T
typhoonzero 已提交
383 384 385 386
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
S
sneaxiy 已提交
387 388 389 390 391
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
T
typhoonzero 已提交
392
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
S
fix bug  
sneaxiy 已提交
393
    ++idx;
T
typhoonzero 已提交
394 395 396 397
  }
  return result;
}

Y
Yu Yang 已提交
398
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
Q
qiaolongfei 已提交
399 400
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
401
  platform::RecordBlock b(kProgramId);
402
  PADDLE_ENFORCE_NOT_NULL(scope);
Y
Yu Yang 已提交
403 404 405 406
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
407 408
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
L
Liu Yiqun 已提交
409
  }
Y
Yu Yang 已提交
410

S
sneaxiy 已提交
411
  int64_t max_memory_size = GetEagerDeletionThreshold();
S
sneaxiy 已提交
412
  std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
413
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
S
sneaxiy 已提交
414 415
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
S
fix bug  
sneaxiy 已提交
416
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
417
        gc.reset(new UnsafeFastGPUGarbageCollector(
S
fix bug  
sneaxiy 已提交
418 419
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
S
sneaxiy 已提交
420
        gc.reset(new DefaultStreamGarbageCollector(
S
fix bug  
sneaxiy 已提交
421 422 423
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
S
sneaxiy 已提交
424
#endif
S
sneaxiy 已提交
425 426
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
S
sneaxiy 已提交
427 428 429 430 431
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

Y
Yu Yang 已提交
432
  for (auto& op : ctx->ops_) {
433
    op->Run(*local_scope, place_);
S
fix bug  
sneaxiy 已提交
434
    if (gc) {
S
sneaxiy 已提交
435
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
S
sneaxiy 已提交
436
    }
Y
Yu Yang 已提交
437
  }
S
sneaxiy 已提交
438

S
fix bug  
sneaxiy 已提交
439
  platform::DeviceContextPool::Instance().Get(place_)->Wait();
S
sneaxiy 已提交
440

Q
qiaolongfei 已提交
441
  if (local_scope != scope) {
Y
Yu Yang 已提交
442
    scope->DeleteScope(local_scope);
443
  } else {
Q
qiaolongfei 已提交
444 445 446 447 448
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
Q
qiaolongfei 已提交
449 450
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
Q
qiaolongfei 已提交
451 452
      scope->DropKids();
    }
Y
Yu Yang 已提交
453 454 455
  }
}

456 457
void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
458
    std::map<std::string, const LoDTensor*>* feed_targets,
W
Wu Yi 已提交
459 460 461
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
462 463
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

464
  PADDLE_ENFORCE(
465
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
466 467
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
468
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
469 470
      "Program in the prepared context should has fetch_ops.");

471 472 473 474 475
  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
476 477
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
478 479 480
    }
  }

W
Wu Yi 已提交
481
  RunPreparedContext(ctx, scope, create_local_scope, create_vars);
482 483 484 485 486 487

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
488
      *(*fetch_targets)[fetch_target_name] =
489 490 491 492 493
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

494 495
void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
M
minqiyang 已提交
496
  VLOG(3) << "use_mkldnn=True";
497 498 499 500 501 502 503 504
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
505 506 507
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
508 509
#endif
}
Q
qijun 已提交
510 511
}  // namespace framework
}  // namespace paddle