generator.cc 7.2 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Leo Chen 已提交
15 16 17
#include "paddle/fluid/framework/generator.h"

#include <glog/logging.h>
Y
yaoxuefeng 已提交
18 19
#include <memory>
#include <utility>
Y
yaoxuefeng 已提交
20

21
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
yaoxuefeng 已提交
22
#include "paddle/fluid/platform/enforce.h"
Y
yaoxuefeng 已提交
23 24 25 26

namespace paddle {
namespace framework {

Y
yaoxuefeng 已提交
27
const std::shared_ptr<Generator>& GetDefaultCUDAGenerator(int64_t device_id) {
28
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
yaoxuefeng 已提交
29 30 31 32 33 34 35

  static int64_t num_cuda_devices = -1;
  static std::once_flag num_devices_init_flag;
  static std::deque<std::once_flag> cuda_device_flags;
  static std::vector<std::shared_ptr<Generator>> default_cuda_generators;

  std::call_once(num_devices_init_flag, []() {
36
    num_cuda_devices = paddle::platform::GetGPUDeviceCount();
Y
yaoxuefeng 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    cuda_device_flags.resize(num_cuda_devices);
    default_cuda_generators.resize(num_cuda_devices);
  });
  if (device_id < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "cuda device id shoule be greater than 0"));
  }

  std::call_once(cuda_device_flags[device_id], [device_id]() {
    default_cuda_generators[device_id] =
        std::make_shared<Generator>(GetRandomSeed(), device_id);
    VLOG(4) << "initial seed: "
            << default_cuda_generators[device_id]->GetCurrentSeed();
  });
  return default_cuda_generators[device_id];
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "getDefaultCUDAGenerator only support in CUDA place"));
#endif
}

L
Leo Chen 已提交
58 59 60 61 62 63 64 65
const std::shared_ptr<Generator>& DefaultCPUGenerator() {
  static auto default_cpu_generator =
      std::make_shared<Generator>(GetRandomSeed());
  VLOG(4) << "initial seed: " << default_cpu_generator->GetCurrentSeed()
          << ", cpu engine: " << default_cpu_generator->GetCPUEngine().get();
  return default_cpu_generator;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
using RNGMap = std::unordered_map<std::string, std::shared_ptr<Generator>>;

static RNGMap& GetRandomSeedGeneratorMap() {
  static auto random_seed_generator_map = RNGMap();
  return random_seed_generator_map;
}

const std::shared_ptr<Generator>& SetRandomSeedGenerator(
    const std::string& name, uint64_t seed) {
  auto& rng_map = GetRandomSeedGeneratorMap();
  auto iter = rng_map.find(name);
  PADDLE_ENFORCE_EQ(iter == rng_map.end(), true,
                    platform::errors::AlreadyExists(
                        "%s RandomSeedGenerator is already exist", name));

  auto generator = std::make_shared<Generator>(seed);
  bool emplace_success = rng_map.emplace(name, generator).second;
  PADDLE_ENFORCE_EQ(
      emplace_success, true,
      platform::errors::PermissionDenied(
          "SetRandomSeedGenerator cannot emplace %s RandomSeedGenerator",
          name));
  return rng_map[name];
}

const std::shared_ptr<Generator>& GetRandomSeedGenerator(
    const std::string& name) {
  auto& rng_map = GetRandomSeedGeneratorMap();
  auto iter = rng_map.find(name);
  PADDLE_ENFORCE_EQ(iter != rng_map.end(), true,
                    platform::errors::NotFound(
                        "%s RandomSeedGenerator is not found, please "
                        "use `set_random_seed_generator` to set rng first",
                        name));
  return iter->second;
}

L
Leo Chen 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
std::shared_ptr<std::mt19937_64> OpDefaultCPUEngine() {
  static auto op_default_cpu_engine = std::make_shared<std::mt19937_64>();
  return op_default_cpu_engine;
}

// NOTE(zhiqiu): there are 3 conditions:
// (1) op seed is not set and DefaultCPUGenerator is inited, use
// DefaultCPUGenerator
// (2) op seed is not set and DefaultCPUGenerator is not inited, use se
// OpDefaultCPUEngine() and set a radnom seed
// (3) op seed is set, use OpDefaultCPUEngine() and set the seed
std::shared_ptr<std::mt19937_64> GetCPURandomEngine(uint64_t seed) {
  if (DefaultCPUGenerator()->GetIsInitPy() && seed == 0) {
    VLOG(4) << "Use random engine from generator";
    return DefaultCPUGenerator()->GetCPUEngine();
  } else {
    // NOTE(zhiqiu): creating an engine instance everytime instead of using
    // OpDefaultCPUEngine(), this is the legacy behavior of random operators.
    // The benefit is that when runing PE with fixed-seed in multiple thrads,
    // each thread has their own engine, and doesn't affect each other.
    //
    // And we need to measure the determinacy of Generator in PE.
    auto engine = std::make_shared<std::mt19937_64>();
    if (seed == 0) {
      seed = GetRandomSeed();
      VLOG(4) << "Use default random engine with random seed = " << seed;
    } else {
      VLOG(4) << "Use default random engine with fixed random seed = " << seed;
    }
    static std::mutex mu_;
    {
      std::lock_guard<std::mutex> lock(mu_);
      engine->seed(seed);
    }
    return engine;
  }
}
Y
yaoxuefeng 已提交
140

W
Wilber 已提交
141
pten::Generator::GeneratorState Generator::GetState() {
L
Leo Chen 已提交
142 143 144
  std::lock_guard<std::mutex> lock(this->mu_);
  state_.cpu_engine = *engine_;
  return this->state_;
Y
yaoxuefeng 已提交
145 146
}

W
Wilber 已提交
147
void Generator::SetState(const pten::Generator::GeneratorState& state) {
L
Leo Chen 已提交
148 149 150
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_ = state;
  this->engine_ = std::make_shared<std::mt19937_64>(state.cpu_engine);
Y
yaoxuefeng 已提交
151 152 153
}

uint64_t Generator::GetCurrentSeed() {
L
Leo Chen 已提交
154 155
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
156 157 158
}

uint64_t Generator::Seed() {
L
Leo Chen 已提交
159
  std::lock_guard<std::mutex> lock(this->mu_);
Y
yaoxuefeng 已提交
160 161 162
  uint64_t seed;
  std::random_device de;
  seed = ((((uint64_t)de()) << 32) + de()) & 0x1FFFFFFFFFFFFF;
L
Leo Chen 已提交
163
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
164
  std::seed_seq seq({seed});
L
Leo Chen 已提交
165
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
166

L
Leo Chen 已提交
167
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
168 169 170
}

void Generator::SetCurrentSeed(uint64_t seed) {
L
Leo Chen 已提交
171 172
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
173
  this->state_.thread_offset = 0;
Y
yaoxuefeng 已提交
174
  std::seed_seq seq({seed});
L
Leo Chen 已提交
175
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
176 177
}

L
Leo Chen 已提交
178 179 180
std::shared_ptr<std::mt19937_64> Generator::GetCPUEngine() {
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->engine_;
Y
yaoxuefeng 已提交
181 182
}

L
Leo Chen 已提交
183 184 185
void Generator::SetCPUEngine(std::shared_ptr<std::mt19937_64> engine) {
  std::lock_guard<std::mutex> lock(this->mu_);
  this->engine_ = engine;
Y
yaoxuefeng 已提交
186 187 188
}

uint64_t Generator::Random64() {
L
Leo Chen 已提交
189 190 191 192 193
  std::lock_guard<std::mutex> lock(this->mu_);
  auto engine = this->engine_;
  return (*engine)();
}

Y
yaoxuefeng 已提交
194 195
std::pair<uint64_t, uint64_t> Generator::IncrementOffset(
    uint64_t increament_offset) {
196
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
yaoxuefeng 已提交
197
  std::lock_guard<std::mutex> lock(this->mu_);
198
  uint64_t cur_offset = this->state_.thread_offset;
Y
yaoxuefeng 已提交
199
  this->state_.thread_offset += increament_offset;
200
  return std::make_pair(this->state_.current_seed, cur_offset);
Y
yaoxuefeng 已提交
201 202 203 204 205 206
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Increment Offset only support in CUDA place"));
#endif
}

L
Leo Chen 已提交
207 208 209
void Generator::SetIsInitPy(bool is_init_py) {
  this->is_init_py_ = is_init_py;
  VLOG(4) << "SetIsInitPy:" << this->is_init_py_;
Y
yaoxuefeng 已提交
210
}
L
Leo Chen 已提交
211
bool Generator::GetIsInitPy() const { return this->is_init_py_; }
Y
yaoxuefeng 已提交
212 213 214

}  // namespace framework
}  // namespace paddle