generator.cc 5.8 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Leo Chen 已提交
15 16 17
#include "paddle/fluid/framework/generator.h"

#include <glog/logging.h>
Y
yaoxuefeng 已提交
18 19
#include <memory>
#include <utility>
Y
yaoxuefeng 已提交
20 21 22

#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
Y
yaoxuefeng 已提交
23 24 25 26

namespace paddle {
namespace framework {

Y
yaoxuefeng 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
const std::shared_ptr<Generator>& GetDefaultCUDAGenerator(int64_t device_id) {
#ifdef PADDLE_WITH_CUDA

  static int64_t num_cuda_devices = -1;
  static std::once_flag num_devices_init_flag;
  static std::deque<std::once_flag> cuda_device_flags;
  static std::vector<std::shared_ptr<Generator>> default_cuda_generators;

  std::call_once(num_devices_init_flag, []() {
    num_cuda_devices = paddle::platform::GetCUDADeviceCount();
    cuda_device_flags.resize(num_cuda_devices);
    default_cuda_generators.resize(num_cuda_devices);
  });
  if (device_id < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "cuda device id shoule be greater than 0"));
  }

  std::call_once(cuda_device_flags[device_id], [device_id]() {
    default_cuda_generators[device_id] =
        std::make_shared<Generator>(GetRandomSeed(), device_id);
    VLOG(4) << "initial seed: "
            << default_cuda_generators[device_id]->GetCurrentSeed();
  });
  return default_cuda_generators[device_id];
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "getDefaultCUDAGenerator only support in CUDA place"));
#endif
}

L
Leo Chen 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
const std::shared_ptr<Generator>& DefaultCPUGenerator() {
  static auto default_cpu_generator =
      std::make_shared<Generator>(GetRandomSeed());
  VLOG(4) << "initial seed: " << default_cpu_generator->GetCurrentSeed()
          << ", cpu engine: " << default_cpu_generator->GetCPUEngine().get();
  return default_cpu_generator;
}

std::shared_ptr<std::mt19937_64> OpDefaultCPUEngine() {
  static auto op_default_cpu_engine = std::make_shared<std::mt19937_64>();
  return op_default_cpu_engine;
}

// NOTE(zhiqiu): there are 3 conditions:
// (1) op seed is not set and DefaultCPUGenerator is inited, use
// DefaultCPUGenerator
// (2) op seed is not set and DefaultCPUGenerator is not inited, use se
// OpDefaultCPUEngine() and set a radnom seed
// (3) op seed is set, use OpDefaultCPUEngine() and set the seed
std::shared_ptr<std::mt19937_64> GetCPURandomEngine(uint64_t seed) {
  if (DefaultCPUGenerator()->GetIsInitPy() && seed == 0) {
    VLOG(4) << "Use random engine from generator";
    return DefaultCPUGenerator()->GetCPUEngine();
  } else {
    // NOTE(zhiqiu): creating an engine instance everytime instead of using
    // OpDefaultCPUEngine(), this is the legacy behavior of random operators.
    // The benefit is that when runing PE with fixed-seed in multiple thrads,
    // each thread has their own engine, and doesn't affect each other.
    //
    // And we need to measure the determinacy of Generator in PE.
    auto engine = std::make_shared<std::mt19937_64>();
    if (seed == 0) {
      seed = GetRandomSeed();
      VLOG(4) << "Use default random engine with random seed = " << seed;
    } else {
      VLOG(4) << "Use default random engine with fixed random seed = " << seed;
    }
    static std::mutex mu_;
    {
      std::lock_guard<std::mutex> lock(mu_);
      engine->seed(seed);
    }
    return engine;
  }
}
Y
yaoxuefeng 已提交
103

L
Leo Chen 已提交
104 105 106 107
GeneratorState Generator::GetState() {
  std::lock_guard<std::mutex> lock(this->mu_);
  state_.cpu_engine = *engine_;
  return this->state_;
Y
yaoxuefeng 已提交
108 109
}

L
Leo Chen 已提交
110 111 112 113
void Generator::SetState(const GeneratorState& state) {
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_ = state;
  this->engine_ = std::make_shared<std::mt19937_64>(state.cpu_engine);
Y
yaoxuefeng 已提交
114 115 116
}

uint64_t Generator::GetCurrentSeed() {
L
Leo Chen 已提交
117 118
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
119 120 121
}

uint64_t Generator::Seed() {
L
Leo Chen 已提交
122
  std::lock_guard<std::mutex> lock(this->mu_);
Y
yaoxuefeng 已提交
123 124 125
  uint64_t seed;
  std::random_device de;
  seed = ((((uint64_t)de()) << 32) + de()) & 0x1FFFFFFFFFFFFF;
L
Leo Chen 已提交
126
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
127
  std::seed_seq seq({seed});
L
Leo Chen 已提交
128
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
129

L
Leo Chen 已提交
130
  return this->state_.current_seed;
Y
yaoxuefeng 已提交
131 132 133
}

void Generator::SetCurrentSeed(uint64_t seed) {
L
Leo Chen 已提交
134 135
  std::lock_guard<std::mutex> lock(this->mu_);
  this->state_.current_seed = seed;
Y
yaoxuefeng 已提交
136
  this->state_.thread_offset = 0;
Y
yaoxuefeng 已提交
137
  std::seed_seq seq({seed});
L
Leo Chen 已提交
138
  this->engine_->seed(seq);
Y
yaoxuefeng 已提交
139 140
}

L
Leo Chen 已提交
141 142 143
std::shared_ptr<std::mt19937_64> Generator::GetCPUEngine() {
  std::lock_guard<std::mutex> lock(this->mu_);
  return this->engine_;
Y
yaoxuefeng 已提交
144 145
}

L
Leo Chen 已提交
146 147 148
void Generator::SetCPUEngine(std::shared_ptr<std::mt19937_64> engine) {
  std::lock_guard<std::mutex> lock(this->mu_);
  this->engine_ = engine;
Y
yaoxuefeng 已提交
149 150 151
}

uint64_t Generator::Random64() {
L
Leo Chen 已提交
152 153 154 155 156
  std::lock_guard<std::mutex> lock(this->mu_);
  auto engine = this->engine_;
  return (*engine)();
}

Y
yaoxuefeng 已提交
157 158 159 160 161 162 163 164 165 166 167 168
std::pair<uint64_t, uint64_t> Generator::IncrementOffset(
    uint64_t increament_offset) {
  uint64_t cur_offset = this->state_.thread_offset;
#ifdef PADDLE_WITH_CUDA
  std::lock_guard<std::mutex> lock(this->mu_);

  this->state_.thread_offset += increament_offset;

#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Increment Offset only support in CUDA place"));
#endif
169
  return std::make_pair(this->state_.current_seed, cur_offset);
Y
yaoxuefeng 已提交
170 171
}

L
Leo Chen 已提交
172 173 174
void Generator::SetIsInitPy(bool is_init_py) {
  this->is_init_py_ = is_init_py;
  VLOG(4) << "SetIsInitPy:" << this->is_init_py_;
Y
yaoxuefeng 已提交
175
}
L
Leo Chen 已提交
176
bool Generator::GetIsInitPy() const { return this->is_init_py_; }
Y
yaoxuefeng 已提交
177 178 179

}  // namespace framework
}  // namespace paddle