test_fused_attention_op.py 12.5 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
import paddle.nn.functional as F
21
import paddle.incubate.nn.functional as incubate_f
L
Li Min 已提交
22 23 24 25 26 27 28
from paddle.nn.layer.norm import LayerNorm
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.transformer import _convert_attention_mask
from paddle import tensor
from paddle.fluid import layers
import unittest
from op_test import OpTest
29 30
from paddle.fluid.framework import default_main_program, _enable_legacy_dygraph
_enable_legacy_dygraph()
31 32

default_main_program().random_seed = 42
L
Li Min 已提交
33 34 35 36 37 38 39 40


class TestFusedAttentionOp(OpTest):
    def setUp(self):
        self.config()
        self.generate_input_data()
        paddle.set_default_dtype(self.x_type)
        self.__class__.op_type = "fused_attention"
41 42
        # use autograd to check grad in this unittest.
        self.__class__.no_need_check_grad = True
L
Li Min 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        self.q_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.k_proj = Linear(
            self.kdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.v_proj = Linear(
            self.vdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.out_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        paddle.set_default_dtype(np.float32)
        self.norm1 = LayerNorm(self.embed_dim)
        self.norm2 = LayerNorm(self.embed_dim)
        paddle.set_default_dtype(self.x_type)
        self.dropout = Dropout(self.dropout_prob, mode="upscale_in_train")

    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
72
        self.pre_layer_norm = False
73
        self.has_attn_mask = True
74
        self.has_cache_kv = False
L
Li Min 已提交
75 76 77 78
        self.training = True

        self.batch_size = 8
        self.query_length = 128
79
        self.cache_length = 128
L
Li Min 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def generate_input_data(self):
        self.query = np.random.rand(self.batch_size, self.query_length,
                                    self.embed_dim).astype(self.x_type)
94 95 96 97 98 99 100 101 102 103 104
        out_seq_len = self.key_length
        if self.has_cache_kv:
            assert self.training is False, ValueError(
                'cache_kv can only used in inference')
            self.cache_kv = np.random.rand(2, self.batch_size, self.num_heads,
                                           self.cache_length,
                                           self.head_dim).astype(self.x_type)
            out_seq_len += self.cache_length
        else:
            self.cache_kv = None

105
        if self.has_attn_mask:
106
            # [B, n_head, seq_len, out_seq_len]
107 108
            self.attn_mask = np.ones(
                (self.batch_size, self.num_heads, self.query_length,
109
                 out_seq_len),
110 111 112 113 114 115 116 117
                dtype=self.attn_mask_type)
            if self.attn_mask_type == np.int64:
                self.attn_mask = np.tril(self.attn_mask)
            elif self.attn_mask_type == np.float64:
                self.attn_mask = (np.tril(self.attn_mask) - 1.0) * 1e9
            else:
                raise ValueError(
                    "'attn_mask_type' should be 'int64' or 'float64'.")
L
Li Min 已提交
118
        else:
119
            self.attn_mask = None
L
Li Min 已提交
120 121 122 123 124 125 126 127
        self.key, self.value = self.query, self.query

        self.dout = np.random.random((self.batch_size, self.query_length,
                                      self.embed_dim)).astype(self.x_type)

    def GetBaselineOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        tensor_query = paddle.to_tensor(self.query, stop_gradient=False)
128 129 130 131 132

        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)

133 134 135 136
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        residual = tensor_query

        ln1_out = tensor_query
        if self.pre_layer_norm:
            ln1_out = self.norm1(tensor_query)

        q = self.q_proj(ln1_out)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q_out = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        k = self.k_proj(ln1_out)
        v = self.v_proj(ln1_out)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k_out = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v_out = tensor.transpose(x=v, perm=[0, 2, 1, 3])

153 154 155 156 157 158 159 160 161 162 163 164
        if self.has_cache_kv:
            # [1, B, n_head, cache_seq_len, head_dim]
            cache_k, cache_v = paddle.split(cache_kv, 2)
            cache_k = paddle.squeeze(cache_k, axis=0)
            cache_v = paddle.squeeze(cache_v, axis=0)
            # [B, n_head, cache_seq_len + seq_len, head_dim]
            # out_seq_len = cache_seq_len + seq_len
            k_out = paddle.concat([cache_k, k_out], axis=-2)
            v_out = paddle.concat([cache_v, v_out], axis=-2)

        # [B, n_head, seq_len, head_dim] * [B, n_head, out_seq_len, head_dim]
        # --> [B, n_head, seq_len, out_seq_len]
L
Li Min 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        qk_out = layers.matmul(
            x=q_out, y=k_out, transpose_y=True, alpha=self.head_dim**-0.5)

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, qk_out.dtype)
            attn_mask_out = qk_out + attn_mask
            softmax_out = F.softmax(attn_mask_out)
        else:
            softmax_out = F.softmax(qk_out)

        if self.dropout_prob:
            dropout_out = F.dropout(
                softmax_out,
                self.dropout_prob,
                training=self.training,
                mode="upscale_in_train")
181 182
            # [B, n_head, seq_len, out_seq_len] * [B, n_head, out_seq_len, head_dim]
            # --> [B, n_head, seq_len, head_dim]
L
Li Min 已提交
183 184 185 186 187 188 189 190 191 192 193 194
            qktv_out = tensor.matmul(dropout_out, v_out)
        else:
            qktv_out = tensor.matmul(softmax_out, v_out)

        fmha_out = tensor.transpose(qktv_out, perm=[0, 2, 1, 3])
        out_linear_in = tensor.reshape(
            x=fmha_out, shape=[0, 0, fmha_out.shape[2] * fmha_out.shape[3]])
        out = self.out_proj(out_linear_in)

        residual_out = residual + self.dropout(out)
        if not self.pre_layer_norm:
            final_out = self.norm1(residual_out)
L
Li Min 已提交
195 196
        else:
            final_out = residual_out
197 198 199 200

        if self.has_cache_kv:
            return final_out

201 202 203
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, tensor_query.grad
L
Li Min 已提交
204 205 206 207 208 209 210 211 212 213 214

    def GetFusedAttentionOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        q_proj_weight = paddle.to_tensor(
            self.q_proj.weight, stop_gradient=False)
        k_proj_weight = paddle.to_tensor(
            self.k_proj.weight, stop_gradient=False)
        v_proj_weight = paddle.to_tensor(
            self.v_proj.weight, stop_gradient=False)
        out_linear_weight = paddle.to_tensor(
            self.out_proj.weight, stop_gradient=False)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

        if self.bias_attr is False:
            qkv_bias_tensor = None
            out_linear_bias = None
        else:
            q_proj_bias = paddle.to_tensor(
                self.q_proj.bias, stop_gradient=False)
            k_proj_bias = paddle.to_tensor(
                self.k_proj.bias, stop_gradient=False)
            v_proj_bias = paddle.to_tensor(
                self.v_proj.bias, stop_gradient=False)
            qkv_bias = np.concatenate(
                (q_proj_bias.numpy(), k_proj_bias.numpy(), v_proj_bias.numpy()))
            qkv_bias = qkv_bias.reshape((3, self.num_heads, self.head_dim))
            qkv_bias_tensor = paddle.to_tensor(qkv_bias, stop_gradient=False)
            out_linear_bias = paddle.to_tensor(
                self.out_proj.bias, stop_gradient=False)
L
Li Min 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

        ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False)
        ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False)
        ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False)
        ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False)

        q_proj_weight = q_proj_weight.numpy().transpose((1, 0))
        k_proj_weight = k_proj_weight.numpy().transpose((1, 0))
        v_proj_weight = v_proj_weight.numpy().transpose((1, 0))
        qkv_weight = np.concatenate(
            (q_proj_weight, k_proj_weight, v_proj_weight))
        qkv_weight = qkv_weight.reshape(
            (3, self.num_heads, self.head_dim, self.embed_dim))

        x = paddle.to_tensor(self.query, stop_gradient=False)
247 248 249
        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)
250 251 252 253
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
254 255 256 257 258 259
        qkv_weight_tensor = paddle.to_tensor(qkv_weight, stop_gradient=False)
        epsilon = 1e-05
        ln2_epsilon = 1e-05

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, x.dtype)
260
        final_out = incubate_f.fused_multi_head_attention(
L
Li Min 已提交
261 262
            x, qkv_weight_tensor, out_linear_weight, self.pre_layer_norm,
            ln1_scale, ln1_bias, ln2_scale, ln2_bias, epsilon, qkv_bias_tensor,
263
            out_linear_bias, cache_kv, attn_mask, self.dropout_prob,
L
Li Min 已提交
264
            self.attn_dropout_prob, ln2_epsilon)
265 266 267 268

        if self.has_cache_kv:
            return final_out[0], final_out[1]

269 270 271
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, x.grad
L
Li Min 已提交
272 273

    def test_fused_attention_op(self):
274 275
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
276
        np.testing.assert_allclose(
L
Li Min 已提交
277
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
278
        np.testing.assert_allclose(
L
Li Min 已提交
279
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
L
Li Min 已提交
280 281


282 283
class TestFusedAttentionOpBiasIsNone(TestFusedAttentionOp):
    def config(self):
284
        super().config()
285 286 287
        self.bias_attr = False


288 289
class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
    def config(self):
290
        super().config()
291
        self.pre_layer_norm = True
292 293 294 295


class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
    def config(self):
296
        super().config()
297 298
        self.pre_layer_norm = True
        self.has_attn_mask = False
299 300


L
Li Min 已提交
301 302
class TestFusedAttentionOpFp16(TestFusedAttentionOp):
    def config(self):
303
        super().config()
L
Li Min 已提交
304 305 306
        self.x_type = np.float16

    def test_fused_attention_op(self):
307 308
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
309 310
        np.testing.assert_allclose(
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-1)
311 312
        np.testing.assert_allclose(
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-1)
L
Li Min 已提交
313 314


315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
class TestFusedAttentionOpCacheKV(TestFusedAttentionOp):
    def config(self):
        super().config()
        self.has_cache_kv = True
        self.training = False
        self.query_length = 1
        self.key_length, self.value_length = 1, 1

    def test_fused_attention_op(self):
        with paddle.no_grad():
            final_out_ref = self.GetBaselineOut()
            final_out, cache_kv_out = self.GetFusedAttentionOut()
            np.testing.assert_allclose(
                final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)


L
Li Min 已提交
331 332
if __name__ == "__main__":
    unittest.main()