test_fused_attention_op.py 12.5 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
import paddle.nn.functional as F
21
import paddle.incubate.nn.functional as incubate_f
L
Li Min 已提交
22 23 24 25 26 27 28
from paddle.nn.layer.norm import LayerNorm
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.transformer import _convert_attention_mask
from paddle import tensor
from paddle.fluid import layers
import unittest
from op_test import OpTest
29 30 31
from paddle.fluid.framework import default_main_program

default_main_program().random_seed = 42
L
Li Min 已提交
32 33 34 35 36 37 38 39


class TestFusedAttentionOp(OpTest):
    def setUp(self):
        self.config()
        self.generate_input_data()
        paddle.set_default_dtype(self.x_type)
        self.__class__.op_type = "fused_attention"
40 41
        # use autograd to check grad in this unittest.
        self.__class__.no_need_check_grad = True
L
Li Min 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        self.q_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.k_proj = Linear(
            self.kdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.v_proj = Linear(
            self.vdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.out_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        paddle.set_default_dtype(np.float32)
        self.norm1 = LayerNorm(self.embed_dim)
        self.norm2 = LayerNorm(self.embed_dim)
        paddle.set_default_dtype(self.x_type)
        self.dropout = Dropout(self.dropout_prob, mode="upscale_in_train")

    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
71
        self.pre_layer_norm = False
72
        self.has_attn_mask = True
73
        self.has_cache_kv = False
L
Li Min 已提交
74 75 76 77
        self.training = True

        self.batch_size = 8
        self.query_length = 128
78
        self.cache_length = 128
L
Li Min 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def generate_input_data(self):
        self.query = np.random.rand(self.batch_size, self.query_length,
                                    self.embed_dim).astype(self.x_type)
93 94 95 96 97 98 99 100 101 102 103
        out_seq_len = self.key_length
        if self.has_cache_kv:
            assert self.training is False, ValueError(
                'cache_kv can only used in inference')
            self.cache_kv = np.random.rand(2, self.batch_size, self.num_heads,
                                           self.cache_length,
                                           self.head_dim).astype(self.x_type)
            out_seq_len += self.cache_length
        else:
            self.cache_kv = None

104
        if self.has_attn_mask:
105
            # [B, n_head, seq_len, out_seq_len]
106 107
            self.attn_mask = np.ones(
                (self.batch_size, self.num_heads, self.query_length,
108
                 out_seq_len),
109 110 111 112 113 114 115 116
                dtype=self.attn_mask_type)
            if self.attn_mask_type == np.int64:
                self.attn_mask = np.tril(self.attn_mask)
            elif self.attn_mask_type == np.float64:
                self.attn_mask = (np.tril(self.attn_mask) - 1.0) * 1e9
            else:
                raise ValueError(
                    "'attn_mask_type' should be 'int64' or 'float64'.")
L
Li Min 已提交
117
        else:
118
            self.attn_mask = None
L
Li Min 已提交
119 120 121 122 123 124 125 126
        self.key, self.value = self.query, self.query

        self.dout = np.random.random((self.batch_size, self.query_length,
                                      self.embed_dim)).astype(self.x_type)

    def GetBaselineOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        tensor_query = paddle.to_tensor(self.query, stop_gradient=False)
127 128 129 130 131

        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)

132 133 134 135
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        residual = tensor_query

        ln1_out = tensor_query
        if self.pre_layer_norm:
            ln1_out = self.norm1(tensor_query)

        q = self.q_proj(ln1_out)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q_out = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        k = self.k_proj(ln1_out)
        v = self.v_proj(ln1_out)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k_out = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v_out = tensor.transpose(x=v, perm=[0, 2, 1, 3])

152 153 154 155 156 157 158 159 160 161 162 163
        if self.has_cache_kv:
            # [1, B, n_head, cache_seq_len, head_dim]
            cache_k, cache_v = paddle.split(cache_kv, 2)
            cache_k = paddle.squeeze(cache_k, axis=0)
            cache_v = paddle.squeeze(cache_v, axis=0)
            # [B, n_head, cache_seq_len + seq_len, head_dim]
            # out_seq_len = cache_seq_len + seq_len
            k_out = paddle.concat([cache_k, k_out], axis=-2)
            v_out = paddle.concat([cache_v, v_out], axis=-2)

        # [B, n_head, seq_len, head_dim] * [B, n_head, out_seq_len, head_dim]
        # --> [B, n_head, seq_len, out_seq_len]
L
Li Min 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        qk_out = layers.matmul(
            x=q_out, y=k_out, transpose_y=True, alpha=self.head_dim**-0.5)

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, qk_out.dtype)
            attn_mask_out = qk_out + attn_mask
            softmax_out = F.softmax(attn_mask_out)
        else:
            softmax_out = F.softmax(qk_out)

        if self.dropout_prob:
            dropout_out = F.dropout(
                softmax_out,
                self.dropout_prob,
                training=self.training,
                mode="upscale_in_train")
180 181
            # [B, n_head, seq_len, out_seq_len] * [B, n_head, out_seq_len, head_dim]
            # --> [B, n_head, seq_len, head_dim]
L
Li Min 已提交
182 183 184 185 186 187 188 189 190 191 192 193
            qktv_out = tensor.matmul(dropout_out, v_out)
        else:
            qktv_out = tensor.matmul(softmax_out, v_out)

        fmha_out = tensor.transpose(qktv_out, perm=[0, 2, 1, 3])
        out_linear_in = tensor.reshape(
            x=fmha_out, shape=[0, 0, fmha_out.shape[2] * fmha_out.shape[3]])
        out = self.out_proj(out_linear_in)

        residual_out = residual + self.dropout(out)
        if not self.pre_layer_norm:
            final_out = self.norm1(residual_out)
L
Li Min 已提交
194 195
        else:
            final_out = residual_out
196 197 198 199

        if self.has_cache_kv:
            return final_out

200 201 202
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, tensor_query.grad
L
Li Min 已提交
203 204 205 206 207 208 209 210 211 212 213

    def GetFusedAttentionOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        q_proj_weight = paddle.to_tensor(
            self.q_proj.weight, stop_gradient=False)
        k_proj_weight = paddle.to_tensor(
            self.k_proj.weight, stop_gradient=False)
        v_proj_weight = paddle.to_tensor(
            self.v_proj.weight, stop_gradient=False)
        out_linear_weight = paddle.to_tensor(
            self.out_proj.weight, stop_gradient=False)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

        if self.bias_attr is False:
            qkv_bias_tensor = None
            out_linear_bias = None
        else:
            q_proj_bias = paddle.to_tensor(
                self.q_proj.bias, stop_gradient=False)
            k_proj_bias = paddle.to_tensor(
                self.k_proj.bias, stop_gradient=False)
            v_proj_bias = paddle.to_tensor(
                self.v_proj.bias, stop_gradient=False)
            qkv_bias = np.concatenate(
                (q_proj_bias.numpy(), k_proj_bias.numpy(), v_proj_bias.numpy()))
            qkv_bias = qkv_bias.reshape((3, self.num_heads, self.head_dim))
            qkv_bias_tensor = paddle.to_tensor(qkv_bias, stop_gradient=False)
            out_linear_bias = paddle.to_tensor(
                self.out_proj.bias, stop_gradient=False)
L
Li Min 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

        ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False)
        ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False)
        ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False)
        ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False)

        q_proj_weight = q_proj_weight.numpy().transpose((1, 0))
        k_proj_weight = k_proj_weight.numpy().transpose((1, 0))
        v_proj_weight = v_proj_weight.numpy().transpose((1, 0))
        qkv_weight = np.concatenate(
            (q_proj_weight, k_proj_weight, v_proj_weight))
        qkv_weight = qkv_weight.reshape(
            (3, self.num_heads, self.head_dim, self.embed_dim))

        x = paddle.to_tensor(self.query, stop_gradient=False)
246 247 248
        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)
249 250 251 252
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
253 254 255 256 257 258
        qkv_weight_tensor = paddle.to_tensor(qkv_weight, stop_gradient=False)
        epsilon = 1e-05
        ln2_epsilon = 1e-05

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, x.dtype)
259
        final_out = incubate_f.fused_multi_head_attention(
L
Li Min 已提交
260 261
            x, qkv_weight_tensor, out_linear_weight, self.pre_layer_norm,
            ln1_scale, ln1_bias, ln2_scale, ln2_bias, epsilon, qkv_bias_tensor,
262
            out_linear_bias, cache_kv, attn_mask, self.dropout_prob,
L
Li Min 已提交
263
            self.attn_dropout_prob, ln2_epsilon)
264 265 266 267

        if self.has_cache_kv:
            return final_out[0], final_out[1]

268 269 270
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, x.grad
L
Li Min 已提交
271 272

    def test_fused_attention_op(self):
273 274
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
275
        np.testing.assert_allclose(
L
Li Min 已提交
276
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)
277
        np.testing.assert_allclose(
L
Li Min 已提交
278
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-4)
L
Li Min 已提交
279 280


281 282
class TestFusedAttentionOpBiasIsNone(TestFusedAttentionOp):
    def config(self):
283
        super().config()
284 285 286
        self.bias_attr = False


287 288
class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
    def config(self):
289
        super().config()
290
        self.pre_layer_norm = True
291 292 293 294


class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
    def config(self):
295
        super().config()
296 297
        self.pre_layer_norm = True
        self.has_attn_mask = False
298 299


L
Li Min 已提交
300 301
class TestFusedAttentionOpFp16(TestFusedAttentionOp):
    def config(self):
302
        super().config()
L
Li Min 已提交
303 304 305
        self.x_type = np.float16

    def test_fused_attention_op(self):
306 307
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
308 309
        np.testing.assert_allclose(
            final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-1)
310 311
        np.testing.assert_allclose(
            x_grad_ref, x_grad.numpy(), rtol=1e-5, atol=1e-1)
L
Li Min 已提交
312 313


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
class TestFusedAttentionOpCacheKV(TestFusedAttentionOp):
    def config(self):
        super().config()
        self.has_cache_kv = True
        self.training = False
        self.query_length = 1
        self.key_length, self.value_length = 1, 1

    def test_fused_attention_op(self):
        with paddle.no_grad():
            final_out_ref = self.GetBaselineOut()
            final_out, cache_kv_out = self.GetFusedAttentionOut()
            np.testing.assert_allclose(
                final_out_ref, final_out.numpy(), rtol=1e-5, atol=1e-4)


L
Li Min 已提交
330 331
if __name__ == "__main__":
    unittest.main()