fc_op.cc 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_op.h"
16
#include <vector>
T
tensor-tang 已提交
17

18 19 20
namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28 29 30 31 32 33 34
class FCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                      "X(Input) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Out(Output) of Fully Connected should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "W(Input) of Fully Connected should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    auto w_dims = ctx->GetInputDim("W");
35
    bool padding_weights = ctx->Attrs().Get<bool>("padding_weights");
36 37 38

    if (ctx->HasInput("Bias")) {
      auto bias_dims = ctx->GetInputDim("Bias");
39
      auto w_dims1 = padding_weights ? w_dims[1] - 4 : w_dims[1];
40 41
      if (bias_dims.size() == 2) {
        PADDLE_ENFORCE_EQ(bias_dims[0], 1,
42 43 44 45 46 47 48 49 50 51 52 53
                          platform::errors::InvalidArgument(
                              "The shape of Bias is invalid."
                              "The height of Bias should be 1."
                              "But received height of Bias is %d.",
                              bias_dims[0]));
        PADDLE_ENFORCE_EQ(
            bias_dims[1], w_dims1,
            platform::errors::InvalidArgument(
                "The shape of Bias is invalid."
                "The width of Bias should be equal to width of Weight."
                "But received width of Bias is %d and width of Weight is %d.",
                bias_dims[1], w_dims1));
54
      } else if (bias_dims.size() == 1) {
55 56 57 58 59 60 61
        PADDLE_ENFORCE_EQ(
            bias_dims[0], w_dims1,
            platform::errors::InvalidArgument(
                "The shape of Bias is invalid."
                "The height of Bias should be equal to the width of weight."
                "But received height of Bias is %d and width of Weight is %d.",
                bias_dims[0], w_dims1));
62 63
      }
    }
64

65 66 67 68 69
    auto& activation_type = ctx->Attrs().Get<std::string>("activation_type");
    if (!activation_type.empty()) {
      PADDLE_ENFORCE_EQ(activation_type, "relu",
                        "Activation %s is not supportetd in fc now.",
                        activation_type.c_str());
70
    }
71 72 73 74 75 76 77 78 79 80 81 82 83
    if (ctx->Attrs().Get<bool>("use_mkldnn")) {
      PADDLE_ENFORCE_EQ(in_dims.size() == 2 || in_dims.size() == 4, true,
                        "Fully Connected input should be 2-D or 4-D tensor.");
    }
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "Fully Connected input should be 2-D tensor.");
    int in_num_col_dims = ctx->Attrs().Get<int>("in_num_col_dims");
    PADDLE_ENFORCE_GT(
        in_dims.size(), in_num_col_dims,
        "The input tensor Input's rank of FCOp should be larger than "
        "in_num_col_dims.");

    std::vector<int64_t> output_dims;
84 85
    FCOutputSize(in_dims, w_dims, output_dims, in_num_col_dims,
                 padding_weights);
T
Tao Luo 已提交
86

87 88
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
    ctx->ShareLoD("Input", "Out");
T
Tao Luo 已提交
89
  }
90

91 92 93 94 95 96 97 98 99
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    if (ctx.Attr<bool>("use_mkldnn")) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
100 101 102
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
        layout, library);
T
tensor-tang 已提交
103
  }
104
};
105 106 107 108 109 110 111 112 113 114 115

void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
  }
T
tensor-tang 已提交
116 117

  if (ctx->HasInput("Bias")) {
118 119
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("Bias")), true,
                      "Should have bias grad");
T
tensor-tang 已提交
120 121 122
    auto bias_dims = ctx->GetInputDim("Bias");
    ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
  }
123 124 125 126
}

framework::OpKernelType FCOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
T
tensor-tang 已提交
127 128
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
T
tensor-tang 已提交
129
  if (ctx.Attr<bool>("use_mkldnn")) {
T
tensor-tang 已提交
130 131 132
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
Y
Yu Yang 已提交
133 134
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout, library);
135 136
}

137
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
T
tensor-tang 已提交
138
 public:
139 140 141 142 143 144 145 146 147 148 149 150 151 152
  void Make() override {
    AddInput("Input",
             "(Tensor), The input tensor of fully connected operator.");
    AddInput("W", "(Tensor), The weight fc op with shape (I, O).");
    AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x O")
        .AsDispensable();
    AddOutput("Out",
              "(Tensor) The output tensor of fully connected operator. ");
    AddAttr<int>("in_num_col_dims",
                 "(int, default 1), The fc op can take tensors with more than "
                 "two dimensions as its inputs.")
        .SetDefault(1)
        .EqualGreaterThan(1);
    AddAttr<std::string>("activation_type",
153
                         "Activation type used in fully connected operator.")
154 155 156 157
        .SetDefault("");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
158 159 160 161 162
    AddAttr<bool>(
        "padding_weights",
        "(bool, default false) When padding weights in the fc fuse pass, "
        "the 'padding_weights' attribute is set as true.")
        .SetDefault(false);
163 164 165 166 167 168 169 170 171
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
    AddComment(R"DOC(
Fully Connected Operator.

The fully connected operation calculates the output based on the input, weights and bias.
The size of each dimension of the parameters checked in the infer-shape.
)DOC");
T
tensor-tang 已提交
172 173 174
  }
};

175 176 177
}  // namespace operators
}  // namespace paddle

T
tensor-tang 已提交
178 179
namespace ops = paddle::operators;
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
180
                  paddle::framework::DefaultGradOpDescMaker<true>);
T
tensor-tang 已提交
181
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
182 183 184
REGISTER_OP_CPU_KERNEL(
    fc, ops::FCOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FCOpKernel<paddle::platform::CPUDeviceContext, double>);