build_strategy.cc 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

C
chengduo 已提交
46 47 48 49 50 51
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

52 53 54 55
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
56
    ResolveOptionConfliction();
C
chengduo 已提交
57

C
chengduo 已提交
58 59 60 61 62
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

63 64
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
65 66
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
67

68
    AppendAddReaderDependencyPass();
C
chengduo 已提交
69
    AppendMultiDevPass();
70
    AppendSetReaderDeviceIndexPass();
C
chengduo 已提交
71 72 73 74 75 76 77 78 79 80 81 82
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
83

C
chengduo 已提交
84 85
    SetCollectiveContext();
  }
86

C
chengduo 已提交
87 88 89
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
90
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
91
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
92 93
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
94
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
95 96 97
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
98
    }
C
chengduo 已提交
99
    if (strategy_.is_distribution_) {
C
chengduo 已提交
100
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
101 102 103
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
104
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
105 106 107
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
108
    }
C
chengduo 已提交
109
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
110
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
111 112 113
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
114
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
115 116
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
117
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
118
    }
C
chengduo 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
132 133
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
134 135 136 137
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
138 139
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
140
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
141
    }
C
chengduo 已提交
142
  }
143

C
chengduo 已提交
144 145 146 147 148 149
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
150

C
chengduo 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
166

C
chengduo 已提交
167 168 169
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
170
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
171
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
172
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
173 174 175
#else
    LOG(WARNING) << "fusion_group is not enabled for Windows/MacOS now, and "
                    "only effective when running with CUDA GPU.";
176
#endif
C
chengduo 已提交
177 178
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
179
    // for single card training, fuse_all_reduce_ops is unnecessary.
180
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
181 182
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
183
    // Fuse all the optimization operators.
C
chengduo 已提交
184 185 186
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
187
    if (strategy_.fuse_all_optimizer_ops_ == true) {
188 189 190
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
191
    }
C
chengduo 已提交
192
  }
C
chengduo 已提交
193

C
chengduo 已提交
194 195 196 197 198 199 200 201 202
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
203
    }
C
chengduo 已提交
204
    VLOG(1) << "CollectiveContext:" << context->String();
205 206
  }

207 208 209 210
  void AppendAddReaderDependencyPass() {
    AppendPass("add_reader_dependency_pass");
  }

211
  // Convert graph to run on multi-devices.
C
chengduo 已提交
212
  void AppendMultiDevPass() {
C
chengduo 已提交
213
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
214 215 216
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
217 218
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
219 220 221 222 223 224 225 226 227 228 229
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
230 231 232 233 234 235
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

236 237 238 239
  void AppendSetReaderDeviceIndexPass() {
    AppendPass("set_reader_device_index_pass");
  }

C
chengduo 已提交
240 241 242 243 244 245 246 247 248 249 250
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
251 252 253 254 255
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

280 281 282 283 284 285 286 287 288 289 290 291
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
292 293
                      platform::errors::PreconditionNotMet(
                          "Please compile with NGRAPH first to use NGRAPH"));
294 295 296
#endif
  }

297 298 299 300
 private:
  BuildStrategy strategy_;
};

301
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
302 303
    bool finalize_strategy) const {
  if (is_finalized_) {
304 305
    return pass_builder_;
  }
306
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
307 308
  if (finalize_strategy) {
    is_finalized_ = true;
309
  }
X
fix  
Xin Pan 已提交
310
  return pass_builder_;
311 312
}

313
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
314
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
315 316
}

317 318 319 320 321
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
322
#if defined(PADDLE_WITH_NCCL)
323 324
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
325
#else
326
                                const bool use_cuda) const {
327
#endif
C
chengduo 已提交
328
  VLOG(1) << "apply all passes";
329 330
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
331 332

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
333
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
334 335 336
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
337 338
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
339 340
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
341
                                                    &local_scopes);
342 343
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
344

345
#if defined(PADDLE_WITH_NCCL)
346
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
347
      pass->Erase(kNCCLCtxs);
348
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
349
#endif
C
chengduo 已提交
350
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
351 352
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
353 354 355 356 357
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
358
#if defined(PADDLE_WITH_NCCL)
C
chengduo 已提交
359 360 361 362 363 364
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
365
#endif
366
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
367 368
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
369
    } else if (pass->Type() == "sequential_execution_pass") {
370 371
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
372
    } else if (pass->Type() == "all_reduce_deps_pass") {
373
#if defined(PADDLE_WITH_NCCL)
374
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
375
      pass->Erase(kNCCLCtxs);
376
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
377 378 379 380
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
381 382
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
383 384 385 386 387 388
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
389 390 391 392 393 394
    } else if (pass->Type() == "fusion_group_pass") {
      pass->Set<bool>("use_gpu", new bool(use_cuda));
      if (!use_cuda) {
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
395 396 397 398 399 400
    } else if (pass->Type() == "fuse_bn_act_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
401 402 403
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
404 405 406 407 408 409
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
410 411 412
    } else if (pass->Type() == "set_reader_device_index_pass") {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
X
fix  
Xin Pan 已提交
413
    }
C
chengduo 已提交
414
    VLOG(1) << "Start Apply Pass " << pass->Type();
415
    graph = pass->Apply(graph);
C
chengduo 已提交
416
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
417
  }
C
chengduo 已提交
418
  VLOG(1) << "All Passes Applied";
419 420
  return graph;
}
D
dzhwinter 已提交
421

422 423 424 425
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
426
USE_PASS(sync_batch_norm_pass);
427
USE_PASS(fuse_relu_depthwise_conv_pass);
428
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
429
USE_PASS(fuse_bn_act_pass);
430
USE_PASS(graph_viz_pass);
431
USE_PASS(multi_batch_merge_pass);
432
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
433
USE_PASS(all_reduce_mode_multi_devices_pass);
434
USE_PASS(dist_multi_devices_pass);
435 436
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
437
USE_PASS(sequential_execution_pass);
438
USE_PASS(all_reduce_deps_pass);
439
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
440
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
441
USE_PASS(lock_free_optimize_pass);
442
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
443
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
444 445
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
446
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
447
USE_PASS(fuse_all_reduce_op_pass);
448
USE_PASS(runtime_context_cache_pass);
449
USE_PASS(set_reader_device_index_pass);
450
USE_PASS(add_reader_dependency_pass);
451 452 453
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
454 455 456
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif
457
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__)
458 459
USE_PASS(fusion_group_pass);
#endif