auc_op.h 4.9 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
25 26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

T
typhoonzero 已提交
29
template <typename Place, typename T>
T
update  
typhoonzero 已提交
30
class AucKernel : public framework::OpKernel {
T
typhoonzero 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* inference = ctx.Input<Tensor>("Inference");
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
      thresholds_list[i] = (float)i / (num_thresholds - 1);
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

T
auc_op  
typhoonzero 已提交
50 51 52 53 54 55
    size_t num_samples = inference->numel();

    const T* inference_data = inference->data<T>();
    Tensor label_casted;
    label_casted.Resize(label->dims());
    bool* label_casted_data = label_casted.mutable_data<bool>(ctx.GetPlace());
T
typhoonzero 已提交
56

T
auc_op  
typhoonzero 已提交
57 58 59 60 61
    const int* label_data = label->data<int>();
    // cast label_data to bool
    for (size_t i = 0; i < num_samples; i++) {
      label_casted_data[i] = static_cast<bool>(label_data[i]);
    }
T
typhoonzero 已提交
62

T
auc_op  
typhoonzero 已提交
63
    // Create local tensor for storing the curve: TP, FN, TN, FP
T
typhoonzero 已提交
64 65
    // TODO(typhoonzero): put these tensors in Scope
    // TODO(typhoonzero): use op to caculate these values.
T
update  
typhoonzero 已提交
66
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
67 68 69 70 71 72

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

T
update  
typhoonzero 已提交
73 74 75 76
    int* tp_data = true_positive.mutable_data<int>(ctx.GetPlace());
    int* fn_data = false_negative.mutable_data<int>(ctx.GetPlace());
    int* tn_data = true_negative.mutable_data<int>(ctx.GetPlace());
    int* fp_data = false_positive.mutable_data<int>(ctx.GetPlace());
T
typhoonzero 已提交
77 78 79 80 81 82 83

    for (auto thresh = thresholds_list.begin(); thresh != thresholds_list.end();
         thresh++) {
      size_t idx_thresh = thresh - thresholds_list.begin();
      // caculate TP, FN, TN, FP for current thresh
      int tp, fn, tn, fp = 0;
      for (size_t i = 0; i < num_samples; i++) {
T
auc_op  
typhoonzero 已提交
84 85 86 87 88 89 90 91 92
        if (label_casted_data[i]) {
          if (inference_data[i] >= (*thresh)) {
            tp++;
          } else {
            tn++;
          }
        } else {
          if (inference_data[i] >= (*thresh)) {
            fp++;
T
typhoonzero 已提交
93
          } else {
T
auc_op  
typhoonzero 已提交
94
            fn++;
T
typhoonzero 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
111 112 113
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
114
    for (int i = 0; i < num_thresholds; i++) {
T
update  
typhoonzero 已提交
115 116 117 118 119
      tp_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] =
          ((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
120 121 122 123 124 125 126 127
    }

    if (curve == "ROC") {
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i - 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
128
    } else if (curve == "PR") {
T
typhoonzero 已提交
129 130 131 132 133 134 135 136 137 138 139
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle