Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
4d988ed2
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d988ed2
编写于
9月 12, 2017
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add auc_op
上级
0be34949
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
212 addition
and
0 deletion
+212
-0
paddle/operators/auc_op.cc
paddle/operators/auc_op.cc
+80
-0
paddle/operators/auc_op.h
paddle/operators/auc_op.h
+132
-0
未找到文件。
paddle/operators/auc_op.cc
0 → 100644
浏览文件 @
4d988ed2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/auc_op.h"
namespace
paddle
{
namespace
operators
{
class
AccuracyOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Inference"
),
"Input of Inference must be initialized."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input of Inference must be initialized."
);
auto
*
inference
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Inference"
);
auto
*
inference_prob
=
ctx
.
Input
<
framework
::
Tensor
>
(
"InferenceProb"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
1
,
"label must be a vector"
);
PADDLE_ENFORCE_EQ
(
inference
->
dims
()[
0
],
label
->
dims
()[
0
],
"inference size must be the same as label size"
);
PADDLE_ENFORCE_EQ
(
inference
->
dims
(),
inference_prob
->
dims
());
ctx
.
Output
<
Tensor
>
(
"Accuracy"
)
->
Resize
({
1
});
}
};
class
AucOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
AucOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Inference"
,
"Topk(indices) the network output, float value indicating "
"probabilities of classification"
);
AddInput
(
"InferenceProb"
,
"Topk(values) the network output, float value indicating "
"probabilities of classification"
);
AddInput
(
"Label"
,
"Label of the training data"
);
// TODO(typhoonzero): support weight
AddOutput
(
"AUC"
,
"Area Under Curve caculations"
);
AddAttr
<
std
::
string
>
(
"curve"
,
"Possible curves are ROC and PR"
)
.
SetDefault
(
"ROC"
);
AddAttr
<
int
>
(
"num_thresholds"
,
"The number of thresholds to use when discretizing the"
" roc curve."
)
.
SetDefault
(
200
);
AddComment
(
R"DOC(Computes the AUC according forward output and label.
You can find the definations here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
Possible curves are:
ROC: Receiver operating characteristic
PR: Precision Recall
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
auc
,
ops
::
AccuracyOp
,
ops
::
AccuracyOpMaker
);
REGISTER_OP_CPU_KERNEL
(
auc
,
ops
::
AucKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/auc_op.h
0 → 100644
浏览文件 @
4d988ed2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
AccuracyKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
inference
=
ctx
.
Input
<
Tensor
>
(
"Inference"
);
auto
*
inference_prob
=
ctx
.
Input
<
Tensor
>
(
"InferenceProb"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
auc
=
ctx
.
Output
<
Tensor
>
(
"AUC"
);
float
*
auc_data
=
auc
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
std
::
string
curve
=
ctx
.
Attr
<
std
::
string
>
(
"curve"
);
int
num_thresholds
=
ctx
.
Attr
<
int
>
(
"num_thresholds"
);
std
::
vector
<
float
>
thresholds_list
;
thresholds_list
.
reserve
(
num_thresholds
);
for
(
int
i
=
1
;
i
<
num_thresholds
-
1
;
i
++
)
{
thresholds_list
[
i
]
=
(
float
)
i
/
(
num_thresholds
-
1
);
}
const
float
kEpsilon
=
1e-7
;
thresholds_list
[
0
]
=
0.0
f
-
kEpsilon
;
thresholds_list
[
num_thresholds
-
1
]
=
1.0
f
+
kEpsilon
;
const
int
*
inference_data
=
inference
->
data
<
int
>
();
const
T
*
inference_prob_data
=
inference
->
data
<
T
>
();
const
T
*
label_data
=
label
->
data
<
T
>
();
size_t
num_samples
=
inference
->
dims
()[
0
];
size_t
class_dim
=
inference
->
dims
()[
1
];
// create local tensor for storing the curve: TP, FN, TN, FP
// TODO(typhoonzero): put these tensors in Scope
// TODO(typhoonzero): use op to caculate these values.
Tensor
true_positive
,
false_positeve
,
true_negative
,
false_negative
;
true_positive
.
Resize
({
num_thresholds
});
false_negative
.
Resize
({
num_thresholds
});
true_negative
.
Resize
({
num_thresholds
});
false_positive
.
Resize
({
num_thresholds
});
int
*
tp_data
=
true_positive
.
mutable_data
<
int
>
();
int
*
fn_data
=
false_negative
.
mutable_data
<
int
>
();
int
*
tn_data
=
true_negative
.
mutable_data
<
int
>
();
int
*
fp_data
=
false_positive
.
mutable_data
<
int
>
();
for
(
auto
thresh
=
thresholds_list
.
begin
();
thresh
!=
thresholds_list
.
end
();
thresh
++
)
{
size_t
idx_thresh
=
thresh
-
thresholds_list
.
begin
();
// caculate TP, FN, TN, FP for current thresh
int
tp
,
fn
,
tn
,
fp
=
0
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
class_dim
;
j
++
)
{
if
(
inference_data
[
i
*
class_dim
+
j
]
==
label_data
[
i
])
{
if
(
inference_prob_data
[
i
*
class_dim
+
j
]
>=
(
*
thresh
))
{
tp
++
;
}
else
{
tn
++
;
}
}
else
{
if
(
inference_prob_data
[
i
*
class_dim
+
j
]
>=
(
*
thresh
))
{
fp
++
;
}
else
{
fn
++
;
}
}
}
}
// store rates
tp_data
[
idx_thresh
]
=
tp
;
fn_data
[
idx_thresh
]
=
fn
;
tn_data
[
idx_thresh
]
=
tn
;
fp_data
[
idx_thresh
]
=
fp
;
}
// epsilon to avoid divide by zero.
float
epsilon
=
1e-6
;
// Riemann sum to caculate auc.
Tensor
tp_rate
,
fp_rate
,
rec_rate
;
tp_rate
.
Resize
({
num_thresholds
});
fp_rate
.
Resize
({
num_thresholds
});
rec_rate
.
Resize
({
num_thresholds
});
float
*
tp_rate_data
=
tp_rate
.
mutable_data
<
float
>
();
float
*
fp_rate_data
=
fp_rate
.
mutable_data
<
float
>
();
float
*
rec_rate_data
=
rec_rate
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
num_thresholds
;
i
++
)
{
tp_rate_data
[
i
]
=
((
float
)
tp_data
[
i
+
epsilon
)
/
(
tp_data
[
i
]
+
fn_data
[
i
]
+
epsilon
);
fp_rate_data
[
i
]
=
(
float
)
fp_data
[
i
]
/
(
fp_data
[
i
]
+
tn_data
[
i
]
+
epsilon
);
rec_rate_data
[
i
]
=
((
float
)
tp_data
[
i
]
+
epsilon
)
/
(
tp_data
[
i
]
+
fp_data
[
i
]
+
epsilon
);
}
if
(
curve
==
"ROC"
)
{
for
(
int
i
=
1
;
i
<
num_thresholds
;
i
++
)
{
auto
dx
=
fp_rate_data
[
i
]
-
fp_rate_data
[
i
-
1
];
auto
y
=
(
tp_rate_data
[
i
]
+
tp_rate_data
[
i
-
1
])
/
2.0
f
;
*
auc_data
=
*
auc_data
+
dx
*
y
;
}
}
else
if
(
curve
=
"PR"
)
{
for
(
int
i
=
1
;
i
<
num_thresholds
;
i
++
)
{
auto
dx
=
tp_rate_data
[
i
]
-
tp_rate_data
[
i
-
1
];
auto
y
=
(
rec_rate_data
[
i
]
+
rec_rate_data
[
i
-
1
])
/
2.0
f
;
*
auc_data
=
*
auc_data
+
dx
*
y
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录