backward.yaml 67.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
- backward_api : abs_double_grad
  forward : abs_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : abs_double_grad
  data_transform:
    skip_transform : grad_x_grad

13 14 15 16
- backward_api : abs_grad
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
17
  infer_meta :
18
    func : UnchangedInferMeta
19
    param : [x]
20
  kernel :
21
    func : abs_grad
22 23
  data_transform:
    skip_transform : out_grad
24
  backward : abs_double_grad
25

26 27 28 29
- backward_api : acos_grad
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
30
  infer_meta :
31 32
    func : UnchangedInferMeta
    param : [x]
33
  kernel :
34
    func : acos_grad
35

36 37 38
- backward_api : acosh_grad
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
39
  output : Tensor(x_grad)
40 41 42 43 44
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acosh_grad
45

46 47 48 49 50 51 52 53 54 55 56 57
- backward_api : add_double_grad
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad

H
hong 已提交
58 59
- backward_api : add_grad
  forward : add (Tensor x, Tensor y) -> Tensor(out)
H
hong 已提交
60
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
H
hong 已提交
61 62 63 64 65 66
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
67
  no_need_buffer : x, y
68
  backward : add_double_grad
H
hong 已提交
69

70 71 72
- backward_api : add_n_grad
  forward : add_n (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
73
  output : Tensor[](x_grad){x.size()}
74
  invoke : add_n_grad_impl(x, out_grad, x_grad)
75 76
  no_need_buffer : x

77 78 79 80 81 82 83 84 85 86
- backward_api : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad

87
- backward_api : addmm_grad
H
hong 已提交
88
  forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

- backward_api : argsort_grad
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad
H
hong 已提交
106
  no_need_buffer : x
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

- backward_api : asin_grad
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asin_grad

- backward_api : asinh_grad
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asinh_grad

C
chentianyu03 已提交
128 129 130 131 132 133 134 135
- backward_api : assign_grad
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
136
    func : assign
C
chentianyu03 已提交
137

138
- backward_api : atan2_grad
139
  forward : atan2 (Tensor x, Tensor y) -> Tensor(out)
140
  args : (Tensor x, Tensor y, Tensor out_grad)
H
hong 已提交
141 142 143 144 145
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
146
    func : atan2_grad
H
hong 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
- backward_api : atan_grad
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atan_grad

- backward_api : atanh_grad
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atanh_grad

168 169 170 171 172 173 174 175 176 177 178 179
- backward_api : batch_norm_double_grad
  forward : batch_norm_grad (Tensor x, Tensor scale, Tensor bias, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor grad_out, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(grad_x), Tensor(grad_scale), Tensor(grad_bias)
  args : (Tensor x, Tensor scale, Tensor out_mean, Tensor out_variance, Tensor saved_mean, Tensor saved_variance, Tensor grad_out,  Tensor grad_x_grad, Tensor grad_scale_grad, Tensor grad_bias_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, x]
  kernel :
    func : batch_norm_grad_grad
    data_type : x
  optional : out_mean, out_variance

H
hong 已提交
180 181 182 183 184 185 186 187 188 189 190
- backward_api : batch_norm_grad
  forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space
191
  backward : batch_norm_double_grad
H
hong 已提交
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
- backward_api : bce_loss_grad
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad

- backward_api : brelu_grad
  forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : brelu_grad

- backward_api : cast_grad
  forward : cast (Tensor x, DataType out_dtype) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cast_grad
    data_type : out_grad

224 225 226 227 228 229 230 231 232 233
- backward_api : ceil_grad
  forward : ceil(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : ceil_grad

234 235 236 237 238 239 240 241 242 243 244
- backward_api : cholesky_grad
  forward : cholesky (Tensor x, bool upper) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cholesky_grad

- backward_api : cholesky_solve_grad
245
  forward : cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
246
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
H
hong 已提交
247 248 249 250 251
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
252 253
    func : cholesky_solve_grad

254 255 256 257 258 259 260 261 262 263
- backward_api : clip_double_grad
  forward : clip_grad (Tensor x, Tensor grad_out, Scalar min = 0., Scalar max = 0.) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

C
chentianyu03 已提交
264 265 266 267 268 269 270 271 272
- backward_api : clip_grad
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad
273 274 275 276 277 278 279 280 281 282 283 284
  backward : clip_double_grad

- backward_api : concat_double_grad
  forward : concat_grad (Tensor[] x, Tensor grad_out, Scalar axis) -> Tensor[](grad_x)
  args : (Tensor[] grad_x_grad, Scalar axis = 0)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : ConcatInferMeta
    param : [grad_x_grad, axis]
  kernel :
    func : concat
  no_need_buffer : x
C
chentianyu03 已提交
285

286 287 288
- backward_api : concat_grad
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
289 290 291 292 293 294
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
H
hong 已提交
295
  no_need_buffer : x
296
  backward : concat_double_grad
297

H
hong 已提交
298 299 300 301 302 303 304 305 306 307
- backward_api : conj_grad
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

H
hong 已提交
308 309 310 311
- backward_api : conv2d_grad
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
312
  invoke : conv2d_grad_impl(input, filter, out_grad,  strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search, input_grad, filter_grad)
313 314 315 316 317 318 319 320 321 322 323
  backward : conv2d_grad_grad

- backward_api : conv2d_grad_grad
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv2d_grad_grad
324
    use_gpudnn : true
325
  optional : grad_input_grad, grad_filter_grad
H
hong 已提交
326

C
chentianyu03 已提交
327 328 329 330 331 332 333 334 335 336
- backward_api : conv2d_transpose_double_grad
  forward : conv2d_transpose_grad(Tensor x, Tensor filter, Tensor grad_out, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(grad_x), Tensor(grad_filter)
  args : (Tensor x, Tensor filter, Tensor grad_out, Tensor grad_x_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : Conv2dTransposeDoubleGradInferMeta
  kernel :
    func : conv2d_transpose_grad_grad
    use_gpudnn : true

F
From00 已提交
337 338 339 340 341 342
- backward_api : conv2d_transpose_grad
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
343
  kernel :
F
From00 已提交
344
    func : conv2d_transpose_grad
345
    use_gpudnn : true
C
chentianyu03 已提交
346
  backward : conv2d_transpose_double_grad
F
From00 已提交
347 348 349 350 351 352 353 354 355

- backward_api : conv3d_transpose_grad
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad
356
    use_gpudnn : true
F
From00 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
- backward_api : cos_grad
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cos_grad

- backward_api : cosh_grad
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cosh_grad

378 379 380 381 382 383 384 385 386 387
- backward_api : cross_entropy_with_softmax_grad
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax

388 389 390 391 392 393 394 395 396 397
- backward_api : cross_grad
  forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cross_grad

398 399 400 401 402 403 404 405 406 407
- backward_api : cumprod_grad
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

408 409 410 411 412 413 414 415 416
- backward_api : cumsum_grad
  forward : cumsum(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

417 418 419 420 421 422 423 424
- backward_api : deformable_conv_grad
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
425
    data_type : x
426 427
  optional : mask

F
From00 已提交
428 429 430 431 432 433 434 435 436
- backward_api : depthwise_conv2d_transpose_grad
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : depthwise_conv2d_transpose_grad

C
chentianyu03 已提交
437 438 439 440 441 442 443 444
- backward_api : det_grad
  forward : det (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
445
    func : determinant_grad
C
chentianyu03 已提交
446

447 448 449 450 451 452 453 454 455
- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad
H
hong 已提交
456
  no_need_buffer : x
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : dist_grad
  forward : dist (Tensor x, Tensor y, float p) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dist_grad
H
hong 已提交
477

478 479 480 481 482 483 484 485 486 487 488 489
- backward_api : divide_double_grad
  forward : divide_grad (Tensor x, Tensor y, Tensor out, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor out, Tensor grad_x, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(y_grad), Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [y, grad_x, grad_x]
  kernel :
    func : divide_double_grad
    data_type : out
  optional : grad_x_grad, grad_y_grad

H
hong 已提交
490 491
- backward_api : divide_grad
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
0
0x45f 已提交
492
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
H
hong 已提交
493 494 495 496 497 498
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad
499
  backward : divide_double_grad
H
hong 已提交
500

H
hong 已提交
501 502 503 504 505 506 507 508 509 510 511
- backward_api : dropout_grad
  forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad
  optional : seed_tensor

512 513 514 515 516 517 518 519 520
- backward_api : eigh_grad
  forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
521 522 523
    data_type : out_v
  data_transform:
    skip_transform : out_w, out_w_grad
H
hong 已提交
524

525 526 527 528 529 530 531 532 533 534
- backward_api : einsum_grad
  forward : einsum (Tensor[] x, str equation) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, str equation)
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : einsum_grad

535 536 537 538 539 540 541 542 543 544
- backward_api : elementwise_pow_grad
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

545 546 547 548 549 550 551 552 553 554
- backward_api : elu_double_grad
  forward : elu_grad (Tensor x, Tensor out, Tensor grad_out, float alpha)-> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad, float alpha)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : elu_double_grad

555 556 557 558 559 560 561 562 563
- backward_api : elu_grad
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad
564
  backward : elu_double_grad
565 566 567 568 569 570 571 572 573 574 575 576 577

- backward_api : erf_grad
  forward : erf (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : erf_grad
    data_type : out_grad

- backward_api : erfinv_grad
578
  forward : erfinv (Tensor x) -> Tensor(out)
579 580 581 582 583 584 585 586
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : erfinv_grad

C
chentianyu03 已提交
587 588 589 590 591 592 593 594 595 596
- backward_api : exp_grad
  forward : exp (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : exp_grad

H
hong 已提交
597 598 599 600 601 602 603 604 605
- backward_api : expand_as_grad
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
H
hong 已提交
606
  no_need_buffer : x
607

608 609 610 611 612 613 614 615 616
- backward_api : expand_double_grad
  forward : expand_grad (Tensor x, Tensor grad_out, IntArray shape) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray shape)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : ExpandInferMeta
  kernel :
    func : expand

H
hong 已提交
617 618 619 620 621 622 623 624 625
- backward_api : expand_grad
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad
W
wanghuancoder 已提交
626
  no_need_buffer : x
627
  backward : expand_double_grad
H
hong 已提交
628

629 630 631 632 633 634 635 636 637 638
- backward_api : expm1_grad
  forward : expm1 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : expm1_grad

639 640 641 642 643 644 645 646 647 648 649 650
- backward_api : flatten_grad
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
H
hong 已提交
651
  no_need_buffer : x
652

H
hong 已提交
653 654 655 656 657 658 659 660 661 662
- backward_api : flip_grad
  forward : flip (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : flip

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
- backward_api : floor_grad
  forward : floor(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : floor_grad

- backward_api : fmax_grad
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

- backward_api : fmin_grad
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

F
From00 已提交
693 694 695 696 697 698 699 700 701 702
- backward_api : frobenius_norm_grad
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

703 704 705 706 707 708 709 710 711 712
- backward_api : gather_grad
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
H
hong 已提交
713
  no_need_buffer : x
714

715 716 717 718 719 720 721 722 723
- backward_api : gather_nd_grad
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
H
hong 已提交
724
  no_need_buffer : x
725

726 727 728 729 730 731 732 733 734 735
- backward_api : gelu_grad
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

736 737 738 739 740 741 742 743 744
- backward_api : graph_send_recv_grad
  forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str pool_type = "SUM", int64_t out_size = 0) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str pool_type = "SUM")
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : graph_send_recv_grad
745
    data_type : out_grad
746 747
  optional: out, dst_count

H
hong 已提交
748 749 750 751 752 753 754 755 756 757
- backward_api : gumbel_softmax_grad
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
- backward_api : hard_shrink_grad
  forward : hard_shrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_shrink_grad

- backward_api : hard_sigmoid_grad
  forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float slope, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : hard_sigmoid_grad

778 779 780 781 782 783 784 785 786 787
- backward_api : hard_swish_grad
  forward : hard_swish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad

788 789 790 791 792 793 794 795 796 797
- backward_api : huber_loss_grad
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

Z
zyfncg 已提交
798 799 800 801
- backward_api : imag_grad
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
802
  invoke : imag_grad_impl(out_grad, x_grad)
Z
zyfncg 已提交
803

804 805 806 807 808 809 810 811 812 813
- backward_api : index_sample_grad
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
H
hong 已提交
814
  no_need_buffer : x
815

F
From00 已提交
816 817 818 819 820 821 822 823 824 825
- backward_api : index_select_grad
  forward : index_select(Tensor x, Tensor index,  int dim) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
H
hong 已提交
826
  no_need_buffer : x
F
From00 已提交
827

828 829 830 831 832 833 834 835 836
- backward_api : kldiv_loss_grad
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
H
hong 已提交
837
  no_need_buffer : x
838

839 840 841 842 843 844 845 846 847 848 849
- backward_api : kron_grad
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

850 851 852 853 854 855 856 857 858 859
- backward_api : kthvalue_grad
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

860 861 862 863 864 865 866 867 868 869 870
- backward_api : label_smooth_grad
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad
  optional : prior_dist

H
hong 已提交
871 872 873 874 875 876 877 878 879 880
- backward_api : layer_norm_grad
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
W
wanghuancoder 已提交
881
  no_need_buffer : bias
H
hong 已提交
882 883
  optional : scale, bias

884 885 886 887 888 889 890 891 892 893
- backward_api : leaky_relu_double_grad
  forward : leaky_relu_grad (Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, float alpha)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_x_grad]
  kernel :
    func : leaky_relu_double_grad

894 895 896 897 898 899 900 901 902
- backward_api : leaky_relu_grad
  forward : leaky_relu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad
903
  backward : leaky_relu_double_grad
904 905

- backward_api : lerp_grad
906
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
907 908 909 910 911 912 913 914
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
- backward_api : lgamma_grad
  forward : lgamma(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : lgamma_grad

- backward_api : log10_grad
  forward : log10 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log10_grad

- backward_api : log1p_grad
  forward : log1p (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log1p_grad

- backward_api : log2_grad
  forward : log2 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log2_grad

955 956 957 958 959 960 961 962 963 964
- backward_api : log_double_grad
  forward : log_grad (Tensor x, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(x_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, x]
  kernel :
    func : log_double_grad

965 966 967 968 969 970 971 972 973
- backward_api : log_grad
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad
974
  backward : log_double_grad
975

976 977 978 979 980 981 982 983 984 985
- backward_api : log_loss_grad
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

986 987 988 989 990 991 992 993 994 995
- backward_api : log_softmax_grad
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

996 997 998 999 1000 1001 1002 1003 1004 1005
- backward_api : logit_grad
  forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float eps)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logit_grad

1006 1007
- backward_api : logsigmoid_grad
  forward : logsigmoid (Tensor x) -> Tensor(out)
H
hong 已提交
1008 1009 1010
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
1011 1012 1013 1014 1015
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logsigmoid_grad

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
- backward_api : logsumexp_grad
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
- backward_api : masked_select_grad
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
H
hong 已提交
1036
  no_need_buffer : x
1037 1038

- backward_api : matmul_double_grad
1039 1040 1041
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
1042 1043
  infer_meta :
    func : GeneralTernaryGradInferMeta
1044
    param : [x, y, grad_out]
1045 1046
  kernel :
    func : matmul_double_grad
1047
  backward : matmul_triple_grad
1048
  optional : grad_x_grad, grad_y_grad
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

- backward_api : matmul_grad
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
1059
  backward : matmul_double_grad
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
- backward_api : matmul_triple_grad
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
- backward_api : matrix_power_grad
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
- backward_api : max_grad
  forward: max (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

F
From00 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
- backward_api : max_pool2d_with_index_grad
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

- backward_api : max_pool3d_with_index_grad
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
- backward_api : maximum_grad
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
- backward_api : maxout_grad
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
- backward_api : mean_all_grad
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

1140 1141 1142 1143 1144 1145
- backward_api : mean_double_grad
  forward: mean_grad (Tensor x, Tensor grad_out, int64_t[] dims={},  bool keep_dim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_out_grad)
  invoke : mean(grad_x_grad, dims, keep_dim)

1146 1147 1148 1149 1150 1151 1152 1153 1154
- backward_api : mean_grad
  forward: mean (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
1155
  backward : mean_double_grad
H
hong 已提交
1156
  no_need_buffer : x
1157

Y
YuanRisheng 已提交
1158 1159 1160
- backward_api : meshgrid_grad
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
1161 1162 1163 1164 1165
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad
Y
YuanRisheng 已提交
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
- backward_api : min_grad
  forward: min (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
- backward_api : minimum_grad
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
- backward_api : mish_grad
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
- backward_api : mode_grad
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1207
- backward_api : modulo_grad
1208
  forward : modulo (Tensor x, Tensor y) -> Tensor(out)
1209 1210 1211 1212 1213 1214 1215 1216 1217
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : modulo_grad
  no_need_buffer : x, y

1218 1219 1220
- backward_api : multi_dot_grad
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
1221 1222 1223 1224 1225
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad
1226 1227 1228 1229

- backward_api : multiplex_grad
  forward : multiplex (Tensor[] ins, Tensor ids) -> Tensor(out)
  args : (Tensor[] ins, Tensor ids, Tensor out_grad)
1230 1231 1232 1233 1234 1235 1236
  output : Tensor[](ins_grad){ins.size()}
  infer_meta :
    func : MultiplexGradInferMeta
    param : [ids, out_grad]
  kernel :
    func : multiplex_grad
    param : [ids, out_grad]
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
- backward_api : multiply_double_grad
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
1248
  backward : multiply_triple_grad
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258
- backward_api : multiply_grad
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
1259
  backward : multiply_double_grad
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
- backward_api : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, x, y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad

1272 1273 1274 1275 1276 1277 1278
- backward_api : mv_grad
  forward : mv (Tensor x, Tensor vec) -> Tensor(out)
  args : (Tensor x, Tensor vec, Tensor out_grad)
  output : Tensor(x_grad), Tensor(vec_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, vec]
H
hong 已提交
1279
  kernel :
1280
    func : mv_grad
H
hong 已提交
1281

1282
- backward_api : nll_loss_grad
Z
zyfncg 已提交
1283 1284 1285
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
H
hong 已提交
1286
  infer_meta :
Z
zyfncg 已提交
1287
    func : NllLossGradInferMeta
H
hong 已提交
1288
  kernel :
1289
    func : nll_loss_grad
Z
zyfncg 已提交
1290
    data_type : input
1291
  optional : weight
H
hong 已提交
1292

H
hong 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
- backward_api : norm_grad
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
- backward_api : p_norm_grad
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

- backward_api : pad3d_grad
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad
W
wanghuancoder 已提交
1322
  no_need_buffer : x
1323

H
hong 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332
- backward_api : pixel_shuffle_grad
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

H
hong 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
- backward_api : poisson_grad
  forward : poisson (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : poisson_grad

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
- backward_api : pool2d_double_grad
  forward : pool2d_grad(Tensor x, Tensor out, Tensor grad_out, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : PoolInferMeta
  kernel :
    func : pool2d_double_grad
    use_gpudnn : true

F
From00 已提交
1353 1354 1355 1356 1357 1358 1359 1360
- backward_api : pool2d_grad
  forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad
1361
    use_gpudnn : true
1362
  backward : pool2d_double_grad
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

- backward_api : pool2d_grad_gpudnn_unused
  forward : pool2d_gpudnn_unused(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad
    use_gpudnn : false
F
From00 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381

- backward_api : pool3d_grad
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool3d_grad
1382
    use_gpudnn : true
F
From00 已提交
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
- backward_api : pow_grad
  forward : pow(Tensor x, Scalar s) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar s=-1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
- backward_api : prelu_grad
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1404
- backward_api : psroi_pool_grad
Z
zyfncg 已提交
1405 1406
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
1407 1408
  output : Tensor(x_grad)
  infer_meta :
Z
zyfncg 已提交
1409
    func : GeneralUnaryGradInferMeta
1410 1411
    param : [x]
  kernel :
1412
    func : psroi_pool_grad
1413
    data_type : x
Z
zyfncg 已提交
1414
  optional : boxes_num
1415 1416 1417 1418 1419 1420

# output is optional
- backward_api : put_along_axis_grad
  forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce)
  output : Tensor(x_grad), Tensor(value_grad)
H
hong 已提交
1421
  infer_meta :
1422 1423
    func : GeneralBinaryGradInferMeta
    param : [x, index]
H
hong 已提交
1424
  kernel :
1425
    func : put_along_axis_grad
H
hong 已提交
1426

Z
zyfncg 已提交
1427 1428 1429 1430
- backward_api : real_grad
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
1431
  invoke : real_grad_impl(out_grad, x_grad)
Z
zyfncg 已提交
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
- backward_api : reciprocal_grad
  forward : reciprocal (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : reciprocal_grad

H
hong 已提交
1443 1444 1445 1446 1447 1448 1449 1450
- backward_api : reduce_prod_grad
  forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
H
hong 已提交
1451
    func : prod_grad
H
hong 已提交
1452

1453 1454 1455
- backward_api : relu_double_grad
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
1456
  output : Tensor(grad_out_grad)
1457
  infer_meta :
1458 1459
    func : UnchangedInferMeta
    param : [out]
1460 1461 1462
  kernel :
    func : relu_double_grad

1463 1464 1465
- backward_api : relu_grad
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
H
hong 已提交
1466 1467 1468
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
1469
    param : [out]
H
hong 已提交
1470
  kernel :
1471
    func : relu_grad
1472
  backward: relu_double_grad
H
hong 已提交
1473

1474 1475 1476 1477 1478 1479 1480 1481 1482
- backward_api : reshape_double_grad
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad
W
wanghuancoder 已提交
1483
  no_need_buffer : grad_out
1484

1485
- backward_api : reshape_grad
1486
  forward : reshape_with_xshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
1498
  backward : reshape_double_grad
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508
- backward_api : roi_align_grad
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
1509
    data_type : boxes
W
wanghuancoder 已提交
1510
  no_need_buffer : x
1511 1512
  optional : boxes_num

Z
zyfncg 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521
- backward_api : roi_pool_grad
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
1522
    data_type : x
Z
zyfncg 已提交
1523 1524
  optional : boxes_num

F
From00 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
- backward_api : roll_grad
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
H
hong 已提交
1535
  no_need_buffer : x
F
From00 已提交
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
- backward_api : round_grad
  forward : round(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : round_grad

Z
zyfncg 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
- backward_api : rsqrt_grad
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad

1557 1558 1559 1560 1561 1562 1563
- backward_api : scale_double_grad
  forward : scale_grad (Tensor grad_out, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_out_grad)
  invoke : scale(grad_x_grad, scale, 0.0, bias_after_scale)
  backward : scale_triple_grad

1564 1565
- backward_api : scale_grad
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
1566
  args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
H
hong 已提交
1567
  output : Tensor(x_grad)
1568
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)
1569 1570 1571 1572 1573 1574 1575
  backward : scale_double_grad

- backward_api : scale_triple_grad
  forward : scale_double_grad (Tensor grad_grad_x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_grad_x_grad)
  invoke : scale(grad_grad_out_grad, scale, 0.0, bias_after_scale)
H
hong 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

- backward_api : scatter_grad
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
H
hong 已提交
1586
  no_need_buffer : updates
H
hong 已提交
1587 1588

- backward_api : scatter_nd_add_grad
1589
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
H
hong 已提交
1590 1591 1592 1593 1594 1595
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
1596
    func : scatter_nd_add_grad
H
hong 已提交
1597
  no_need_buffer : updates
H
hong 已提交
1598

1599 1600 1601 1602
- backward_api : segment_pool_grad
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
H
hong 已提交
1603
  infer_meta :
1604 1605
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1606
  kernel :
1607
    func : segment_pool_grad
1608
    data_type : x
H
hong 已提交
1609
  optional : summed_ids
H
hong 已提交
1610

1611 1612 1613 1614
- backward_api : selu_grad
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
H
hong 已提交
1615
  infer_meta :
1616 1617
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1618
  kernel :
1619
    func : selu_grad
H
hong 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628
- backward_api : sigmoid_cross_entropy_with_logits_grad
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1629
    func : sigmoid_cross_entropy_with_logits_grad
H
hong 已提交
1630

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
- backward_api : sigmoid_double_grad
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad

1642 1643 1644 1645 1646 1647 1648 1649 1650
- backward_api : sigmoid_grad
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
  backward : sigmoid_double_grad

- backward_api : sigmoid_triple_grad
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
1661
    func : sigmoid_triple_grad
H
hong 已提交
1662

1663 1664 1665
- backward_api : silu_grad
  forward : silu (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1666 1667 1668 1669 1670
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1671
    func : silu_grad
H
hong 已提交
1672

1673 1674 1675 1676
- backward_api : sin_grad
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1677
  infer_meta :
1678 1679
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1680
  kernel :
1681
    func : sin_grad
H
hong 已提交
1682

1683 1684 1685 1686
- backward_api : sinh_grad
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1687
  infer_meta :
1688 1689
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1690
  kernel :
1691
    func : sinh_grad
H
hong 已提交
1692

H
hong 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
- backward_api : slice_grad
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
H
hong 已提交
1702
  no_need_buffer : input
H
hong 已提交
1703

1704 1705 1706 1707
- backward_api : soft_shrink_grad
  forward : soft_shrink (Tensor x, float lambda) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float lambda)
  output : Tensor(x_grad)
H
hong 已提交
1708 1709
  infer_meta :
    func : UnchangedInferMeta
1710
    param : [x]
H
hong 已提交
1711
  kernel :
1712
    func : soft_shrink_grad
H
hong 已提交
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722
- backward_api : softmax_grad
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
1723
    use_gpudnn : true
H
hong 已提交
1724

1725
- backward_api : split_grad
1726
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
H
hong 已提交
1727
  args : (Tensor[] out_grad, Scalar axis = -1)
1728 1729 1730
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.
H
hong 已提交
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
- backward_api : sqrt_grad
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad

- backward_api : square_grad
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad

1752
- backward_api : squeeze_grad
1753
  forward : squeeze(Tensor x, int[] axes) -> Tensor(out), Tensor(xshape)
1754 1755 1756 1757 1758 1759 1760 1761
  args : (Tensor xshape, Tensor out_grad, int[] axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad

1762 1763 1764
- backward_api : stack_grad
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
1765 1766 1767 1768 1769 1770 1771
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
1772 1773
  no_need_buffer : x

1774 1775 1776 1777 1778 1779 1780 1781 1782
- backward_api : strided_slice_grad
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
H
hong 已提交
1783
  no_need_buffer : x
1784

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
- backward_api : subtract_double_grad
  forward : subtract_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : subtract_double_grad
  optional : grad_x_grad, grad_y_grad
  no_need_buffer : y, grad_out

1797 1798 1799 1800 1801 1802 1803 1804 1805
- backward_api : subtract_grad
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
H
hong 已提交
1806
  no_need_buffer : x, y
1807
  backward : subtract_double_grad
H
hong 已提交
1808

1809 1810 1811 1812 1813 1814 1815
- backward_api : sum_double_grad
  forward : sum_grad (Tensor x, Tensor grad_out, int64_t[] dims, bool keep_dim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={}, bool keep_dim=false)
  output : Tensor(grad_out_grad)
  invoke : sum(grad_x_grad, dims, grad_x_grad.dtype(), keep_dim)
  backward : sum_triple_grad

F
From00 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824
- backward_api : sum_grad
  forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=paddle::experimental::DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
W
wanghuancoder 已提交
1825
  no_need_buffer : x
1826 1827 1828 1829 1830 1831
  backward : sum_double_grad

- backward_api : sum_triple_grad
  forward : sum_double_grad (Tensor grad_grad_x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_grad_x_grad)
1832
  invoke : sum_grad(grad_grad_x, grad_grad_out_grad, dims, keep_dim, reduce_all, grad_grad_x_grad)
H
hong 已提交
1833
  no_need_buffer : x
F
From00 已提交
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
- backward_api : swish_grad
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad

1845 1846 1847 1848 1849 1850 1851 1852 1853
- backward_api : take_along_axis_grad
  forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : take_along_axis_grad
H
hong 已提交
1854

1855 1856 1857
- backward_api : tan_grad
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1858 1859 1860 1861 1862
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1863
    func : tan_grad
H
hong 已提交
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
- backward_api : tanh_double_grad
  forward : tanh_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, out]
  kernel :
    func : tanh_double_grad
  backward : tanh_triple_grad

1876 1877 1878 1879
- backward_api : tanh_grad
  forward : tanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1880
  infer_meta :
1881 1882
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1883
  kernel :
1884
    func : tanh_grad
1885
  backward : tanh_double_grad
H
hong 已提交
1886

1887 1888
- backward_api : tanh_shrink_grad
  forward : tanh_shrink (Tensor x) -> Tensor(out)
Z
zhangbo9674 已提交
1889 1890 1891 1892 1893 1894
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1895
    func : tanh_shrink_grad
H
hong 已提交
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
- backward_api : tanh_triple_grad
  forward : tanh_double_grad (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward) -> Tensor(grad_out_new), Tensor(grad_out_grad)
  args : (Tensor out, Tensor grad_out_forward, Tensor grad_x_grad_forward, Tensor grad_out_new_grad, Tensor grad_out_grad_grad)
  output : Tensor(out_grad), Tensor(grad_out_forward_grad), Tensor(grad_x_grad_forward_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, out, grad_x_grad_forward]
  kernel :
    func : tanh_triple_grad

1907 1908 1909 1910 1911 1912 1913 1914 1915
- backward_api : thresholded_relu_grad
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
H
hong 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925
- backward_api : tile_double_grad
  forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, IntArray repeat_times)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : TileInferMeta
  kernel :
    func : tile

1926
- backward_api : tile_grad
1927 1928
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
1929 1930 1931 1932 1933 1934
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
H
hong 已提交
1935
  no_need_buffer : x
1936
  backward : tile_double_grad
H
hong 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
- backward_api : top_k_grad
  forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

1948 1949 1950 1951 1952 1953 1954 1955 1956
- backward_api : trace_grad
  forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : trace_grad
H
hong 已提交
1957
  no_need_buffer : x
H
hong 已提交
1958

1959 1960 1961 1962 1963 1964
- backward_api : transpose_double_grad
  forward : transpose_grad (Tensor grad_out, int[] axis) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] axis)
  output : Tensor(grad_out_grad)
  invoke : transpose(grad_x_grad, axis)

1965 1966 1967 1968 1969 1970 1971 1972 1973
- backward_api : transpose_grad
  forward : transpose (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : transpose_grad
1974
  backward : transpose_double_grad
H
hong 已提交
1975

H
hong 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
- backward_api : triangular_solve_grad
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

F
From00 已提交
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
- backward_api : tril_triu_grad
  forward : tril_triu(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : tril_triu_grad

1996 1997 1998 1999 2000 2001 2002 2003 2004
- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad
H
hong 已提交
2005

2006 2007 2008 2009 2010 2011
- backward_api : unbind_grad
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

2012 2013 2014 2015 2016 2017 2018 2019 2020
- backward_api : unfold_grad
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
H
hong 已提交
2021
  no_need_buffer : x
H
hong 已提交
2022

2023
- backward_api : unsqueeze_grad
2024
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(out), Tensor(xshape)
2025 2026 2027 2028 2029 2030 2031 2032
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad

2033 2034 2035 2036 2037 2038 2039 2040 2041
- backward_api : where_grad
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
H
hong 已提交
2042
  no_need_buffer : x, y