backward.yaml 55.7 KB
Newer Older
1 2 3 4
- backward_api : abs_grad
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
5
  infer_meta :
6
    func : UnchangedInferMeta
7
    param : [x]
8
  kernel :
9
    func : abs_grad
10 11
  data_transform:
    skip_transform : out_grad
12

13 14 15 16
- backward_api : acos_grad
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
17
  infer_meta :
18 19
    func : UnchangedInferMeta
    param : [x]
20
  kernel :
21
    func : acos_grad
22

23 24 25
- backward_api : acosh_grad
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
26
  output : Tensor(x_grad)
27 28 29 30 31
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acosh_grad
32

33 34 35 36 37 38 39 40 41 42 43 44
- backward_api : add_double_grad
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad

H
hong 已提交
45 46
- backward_api : add_grad
  forward : add (Tensor x, Tensor y) -> Tensor(out)
H
hong 已提交
47
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
H
hong 已提交
48 49 50 51 52 53
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
54
  no_need_buffer : x, y
55
  backward : add_double_grad
H
hong 已提交
56

57 58 59
- backward_api : add_n_grad
  forward : add_n (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
60
  output : Tensor[](x_grad){x.size()}
61 62 63
  invoke : add_n_grad_impl(x, out_grad)
  no_need_buffer : x

64 65 66 67 68 69 70 71 72 73
- backward_api : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad

74
- backward_api : addmm_grad
H
hong 已提交
75
  forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

- backward_api : argsort_grad
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad
H
hong 已提交
93
  no_need_buffer : x
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

- backward_api : asin_grad
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asin_grad

- backward_api : asinh_grad
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asinh_grad

C
chentianyu03 已提交
115 116 117 118 119 120 121 122
- backward_api : assign_grad
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
123
    func : assign
C
chentianyu03 已提交
124

125
- backward_api : atan2_grad
126
  forward : atan2 (Tensor x, Tensor y) -> Tensor(out)
127
  args : (Tensor x, Tensor y, Tensor out_grad)
H
hong 已提交
128 129 130 131 132
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
133
    func : atan2_grad
H
hong 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
- backward_api : atan_grad
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atan_grad

- backward_api : atanh_grad
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atanh_grad

H
hong 已提交
155 156 157 158 159 160 161 162 163 164 165 166
- backward_api : batch_norm_grad
  forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
- backward_api : bce_loss_grad
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad

- backward_api : brelu_grad
  forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : brelu_grad

- backward_api : cast_grad
  forward : cast (Tensor x, DataType out_dtype) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cast_grad
    data_type : out_grad

198 199 200 201 202 203 204 205 206 207
- backward_api : ceil_grad
  forward : ceil(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : ceil_grad

208 209 210 211 212 213 214 215 216 217 218
- backward_api : cholesky_grad
  forward : cholesky (Tensor x, bool upper) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cholesky_grad

- backward_api : cholesky_solve_grad
219
  forward : cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
220
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
H
hong 已提交
221 222 223 224 225
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
226 227
    func : cholesky_solve_grad

C
chentianyu03 已提交
228 229 230 231 232 233 234 235 236 237
- backward_api : clip_grad
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

238 239 240
- backward_api : concat_grad
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
241 242 243 244 245 246
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
H
hong 已提交
247
  no_need_buffer : x
248

H
hong 已提交
249 250 251 252 253 254 255 256 257 258
- backward_api : conj_grad
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

H
hong 已提交
259 260 261 262 263 264
- backward_api : conv2d_grad
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
  invoke : conv2d_grad_impl(input, filter, out_grad,  strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search)

F
From00 已提交
265 266 267 268 269 270
- backward_api : conv2d_transpose_grad
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
271
  kernel :
F
From00 已提交
272 273 274 275 276 277 278 279 280 281 282
    func : conv2d_transpose_grad

- backward_api : conv3d_transpose_grad
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
- backward_api : cos_grad
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cos_grad

- backward_api : cosh_grad
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cosh_grad

303 304 305 306 307 308 309 310 311 312
- backward_api : cross_entropy_with_softmax_grad
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax

313 314 315 316 317 318 319 320 321 322
- backward_api : cross_grad
  forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cross_grad

323 324 325 326 327 328 329 330 331 332
- backward_api : cumprod_grad
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

333 334 335 336 337 338 339 340 341
- backward_api : cumsum_grad
  forward : cumsum(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

342 343 344 345 346 347 348 349 350 351
- backward_api : deformable_conv_grad
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
  optional : mask

F
From00 已提交
352 353 354 355 356 357 358 359 360
- backward_api : depthwise_conv2d_transpose_grad
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : depthwise_conv2d_transpose_grad

C
chentianyu03 已提交
361 362 363 364 365 366 367 368
- backward_api : det_grad
  forward : det (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
H
hong 已提交
369
    func : determinant_grad  
C
chentianyu03 已提交
370

371 372 373 374 375 376 377 378 379
- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad
H
hong 已提交
380
  no_need_buffer : x
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : dist_grad
  forward : dist (Tensor x, Tensor y, float p) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dist_grad
H
hong 已提交
401 402 403

- backward_api : divide_grad
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
0
0x45f 已提交
404
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
H
hong 已提交
405 406 407 408 409 410 411
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad

H
hong 已提交
412 413 414 415 416 417 418 419 420 421 422
- backward_api : dropout_grad
  forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad
  optional : seed_tensor

423 424 425 426 427 428 429 430 431
- backward_api : eigh_grad
  forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
H
hong 已提交
432

433 434 435 436 437 438 439 440 441 442
- backward_api : elementwise_pow_grad
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
- backward_api : elu_grad
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad

- backward_api : erf_grad
  forward : erf (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : erf_grad
    data_type : out_grad

- backward_api : erfinv_grad
465
  forward : erfinv (Tensor x) -> Tensor(out)
466 467 468 469 470 471 472 473
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : erfinv_grad

C
chentianyu03 已提交
474 475 476 477 478 479 480 481 482 483
- backward_api : exp_grad
  forward : exp (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : exp_grad

H
hong 已提交
484 485 486 487 488 489 490 491 492
- backward_api : expand_as_grad
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
H
hong 已提交
493
  no_need_buffer : x
494

495 496 497 498 499 500 501 502 503 504
- backward_api : expm1_grad
  forward : expm1 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : expm1_grad

505 506 507 508 509 510 511 512 513 514 515 516
- backward_api : flatten_grad
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
H
hong 已提交
517
  no_need_buffer : x
518

H
hong 已提交
519 520 521 522 523 524 525 526 527 528
- backward_api : flip_grad
  forward : flip (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : flip

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
- backward_api : floor_grad
  forward : floor(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : floor_grad

- backward_api : fmax_grad
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

- backward_api : fmin_grad
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

F
From00 已提交
559 560 561 562 563 564 565 566 567 568
- backward_api : frobenius_norm_grad
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

569 570 571 572 573 574 575 576 577 578
- backward_api : gather_grad
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
H
hong 已提交
579
  no_need_buffer : x
580

581 582 583 584 585 586 587 588 589
- backward_api : gather_nd_grad
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
H
hong 已提交
590
  no_need_buffer : x
591

592 593 594 595 596 597 598 599 600 601
- backward_api : gelu_grad
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

602 603 604 605 606 607 608 609 610 611 612
- backward_api : graph_send_recv_grad
  forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str pool_type = "SUM", int64_t out_size = 0) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str pool_type = "SUM")
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : graph_send_recv_grad
  optional: out, dst_count

H
hong 已提交
613 614 615 616 617 618 619 620 621 622
- backward_api : gumbel_softmax_grad
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
- backward_api : hard_shrink_grad
  forward : hard_shrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_shrink_grad

- backward_api : hard_sigmoid_grad
  forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float slope, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : hard_sigmoid_grad

643 644 645 646 647 648 649 650 651 652
- backward_api : hard_swish_grad
  forward : hard_swish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad

653 654 655 656 657 658 659 660 661 662
- backward_api : huber_loss_grad
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

Z
zyfncg 已提交
663 664 665 666 667 668
- backward_api : imag_grad
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : imag_grad_impl(out_grad)

669 670 671 672 673 674 675 676 677 678
- backward_api : index_sample_grad
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
H
hong 已提交
679
  no_need_buffer : x
680

F
From00 已提交
681 682 683 684 685 686 687 688 689 690
- backward_api : index_select_grad
  forward : index_select(Tensor x, Tensor index,  int dim) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
H
hong 已提交
691
  no_need_buffer : x
F
From00 已提交
692

693 694 695 696 697 698 699 700 701
- backward_api : kldiv_loss_grad
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
H
hong 已提交
702
  no_need_buffer : x
703

704 705 706 707 708 709 710 711 712 713 714
- backward_api : kron_grad
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

715 716 717 718 719 720 721 722 723 724
- backward_api : kthvalue_grad
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

725 726 727 728 729 730 731 732 733 734 735
- backward_api : label_smooth_grad
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad
  optional : prior_dist

H
hong 已提交
736 737 738 739 740 741 742 743 744 745 746 747
- backward_api : layer_norm_grad
  forward : layer_norm (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) -> Tensor(out), Tensor(mean), Tensor(variance)
  args : (Tensor x,  Tensor scale, Tensor bias, Tensor mean, Tensor variance, Tensor out_grad, float epsilon, int begin_norm_axis, bool is_test)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : LayerNormGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : layer_norm_grad
    data_type : out_grad
  optional : scale, bias

748 749 750 751 752 753 754 755 756 757 758
- backward_api : leaky_relu_grad
  forward : leaky_relu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad

- backward_api : lerp_grad
759
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
760 761 762 763 764 765 766 767
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
- backward_api : lgamma_grad
  forward : lgamma(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : lgamma_grad

- backward_api : log10_grad
  forward : log10 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log10_grad

- backward_api : log1p_grad
  forward : log1p (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log1p_grad

- backward_api : log2_grad
  forward : log2 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log2_grad

- backward_api : log_grad
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad

818 819 820 821 822 823 824 825 826 827
- backward_api : log_loss_grad
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

828 829 830 831 832 833 834 835 836 837
- backward_api : log_softmax_grad
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

838 839 840 841 842 843 844 845 846 847
- backward_api : logit_grad
  forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float eps)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logit_grad

848 849
- backward_api : logsigmoid_grad
  forward : logsigmoid (Tensor x) -> Tensor(out)
H
hong 已提交
850 851 852
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
853 854 855 856 857
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logsigmoid_grad

858 859 860 861 862 863 864 865 866 867
- backward_api : logsumexp_grad
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

868 869 870 871 872 873 874 875 876 877
- backward_api : masked_select_grad
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
H
hong 已提交
878
  no_need_buffer : x
879 880

- backward_api : matmul_double_grad
881 882 883
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
884 885
  infer_meta :
    func : GeneralTernaryGradInferMeta
886
    param : [x, y, grad_out]
887 888
  kernel :
    func : matmul_double_grad
889
  backward : matmul_triple_grad
890
  optional : grad_x_grad, grad_y_grad
891 892 893 894 895 896 897 898 899 900

- backward_api : matmul_grad
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
901
  backward : matmul_double_grad
902

903 904 905 906 907 908 909 910 911 912 913
- backward_api : matmul_triple_grad
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

914 915 916 917 918 919 920 921 922 923
- backward_api : matrix_power_grad
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

924 925 926 927 928 929 930 931 932 933
- backward_api : max_grad
  forward: max (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

F
From00 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
- backward_api : max_pool2d_with_index_grad
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

- backward_api : max_pool3d_with_index_grad
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

952 953 954 955 956 957 958 959 960 961
- backward_api : maximum_grad
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

962 963 964 965 966 967 968 969 970 971
- backward_api : maxout_grad
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

972 973 974 975 976 977 978 979 980 981
- backward_api : mean_all_grad
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

982 983 984 985 986 987
- backward_api : mean_double_grad
  forward: mean_grad (Tensor x, Tensor grad_out, int64_t[] dims={},  bool keep_dim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_out_grad)
  invoke : mean(grad_x_grad, dims, keep_dim)

988 989 990 991 992 993 994 995 996
- backward_api : mean_grad
  forward: mean (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
997
  backward : mean_double_grad
H
hong 已提交
998
  no_need_buffer : x
999

Y
YuanRisheng 已提交
1000 1001 1002
- backward_api : meshgrid_grad
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
1003 1004 1005 1006 1007
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad
Y
YuanRisheng 已提交
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
- backward_api : min_grad
  forward: min (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
- backward_api : minimum_grad
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
- backward_api : mish_grad
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
- backward_api : mode_grad
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1049
- backward_api : modulo_grad
1050
  forward : modulo (Tensor x, Tensor y) -> Tensor(out)
1051 1052 1053 1054 1055 1056 1057 1058 1059
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : modulo_grad
  no_need_buffer : x, y

1060 1061 1062
- backward_api : multi_dot_grad
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
1063 1064 1065 1066 1067
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad
1068 1069 1070 1071

- backward_api : multiplex_grad
  forward : multiplex (Tensor[] ins, Tensor ids) -> Tensor(out)
  args : (Tensor[] ins, Tensor ids, Tensor out_grad)
1072 1073 1074 1075 1076 1077 1078
  output : Tensor[](ins_grad){ins.size()}
  infer_meta :
    func : MultiplexGradInferMeta
    param : [ids, out_grad]
  kernel :
    func : multiplex_grad
    param : [ids, out_grad]
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
- backward_api : multiply_double_grad
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad

1091 1092 1093 1094 1095 1096 1097 1098 1099
- backward_api : multiply_grad
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
1100
  backward : multiply_double_grad
1101 1102 1103 1104 1105 1106 1107 1108

- backward_api : mv_grad
  forward : mv (Tensor x, Tensor vec) -> Tensor(out)
  args : (Tensor x, Tensor vec, Tensor out_grad)
  output : Tensor(x_grad), Tensor(vec_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, vec]
H
hong 已提交
1109
  kernel :
1110
    func : mv_grad
H
hong 已提交
1111

1112
- backward_api : nll_loss_grad
Z
zyfncg 已提交
1113 1114 1115
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
H
hong 已提交
1116
  infer_meta :
Z
zyfncg 已提交
1117
    func : NllLossGradInferMeta
H
hong 已提交
1118
  kernel :
1119
    func : nll_loss_grad
Z
zyfncg 已提交
1120
    data_type : input
1121
  optional : weight
H
hong 已提交
1122

H
hong 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
- backward_api : norm_grad
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
- backward_api : p_norm_grad
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

- backward_api : pad3d_grad
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad

H
hong 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161
- backward_api : pixel_shuffle_grad
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

F
From00 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
- backward_api : pool2d_grad
  forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad

- backward_api : pool3d_grad
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool3d_grad

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
- backward_api : pow_grad
  forward : pow(Tensor x, Scalar s) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar s=-1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
- backward_api : prelu_grad
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1200
- backward_api : psroi_pool_grad
Z
zyfncg 已提交
1201 1202
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
1203 1204
  output : Tensor(x_grad)
  infer_meta :
Z
zyfncg 已提交
1205
    func : GeneralUnaryGradInferMeta
1206 1207
    param : [x]
  kernel :
1208
    func : psroi_pool_grad
Z
zyfncg 已提交
1209
  optional : boxes_num
1210 1211 1212 1213 1214 1215

# output is optional
- backward_api : put_along_axis_grad
  forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce)
  output : Tensor(x_grad), Tensor(value_grad)
H
hong 已提交
1216
  infer_meta :
1217 1218
    func : GeneralBinaryGradInferMeta
    param : [x, index]
H
hong 已提交
1219
  kernel :
1220
    func : put_along_axis_grad
H
hong 已提交
1221

Z
zyfncg 已提交
1222 1223 1224 1225 1226 1227
- backward_api : real_grad
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : real_grad_impl(out_grad)

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
- backward_api : reciprocal_grad
  forward : reciprocal (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : reciprocal_grad

H
hong 已提交
1238 1239 1240 1241 1242 1243 1244 1245
- backward_api : reduce_prod_grad
  forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
H
hong 已提交
1246
    func : prod_grad
H
hong 已提交
1247

1248 1249 1250
- backward_api : relu_double_grad
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
1251
  output : Tensor(grad_out_grad)
1252
  infer_meta :
1253 1254
    func : UnchangedInferMeta
    param : [out]
1255 1256 1257
  kernel :
    func : relu_double_grad

1258 1259 1260
- backward_api : relu_grad
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
H
hong 已提交
1261 1262 1263
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
1264
    param : [out]
H
hong 已提交
1265
  kernel :
1266
    func : relu_grad
1267
  backward: relu_double_grad
H
hong 已提交
1268

1269
- backward_api : reshape_grad
1270
  forward : reshape_with_xshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
- backward_api : roi_align_grad
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
  optional : boxes_num

Z
zyfncg 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
- backward_api : roi_pool_grad
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
  optional : boxes_num

F
From00 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
- backward_api : roll_grad
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
H
hong 已提交
1315
  no_need_buffer : x
F
From00 已提交
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
- backward_api : round_grad
  forward : round(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : round_grad

Z
zyfncg 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
- backward_api : rsqrt_grad
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad

1337 1338 1339 1340 1341 1342 1343
- backward_api : scale_double_grad
  forward : scale_grad (Tensor grad_out, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_out_grad)
  invoke : scale(grad_x_grad, scale, 0.0, bias_after_scale)
  backward : scale_triple_grad

1344 1345
- backward_api : scale_grad
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
1346
  args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
H
hong 已提交
1347
  output : Tensor(x_grad)
1348
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)
1349 1350 1351 1352 1353 1354 1355
  backward : scale_double_grad

- backward_api : scale_triple_grad
  forward : scale_double_grad (Tensor grad_grad_x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_grad_x_grad)
  invoke : scale(grad_grad_out_grad, scale, 0.0, bias_after_scale)
H
hong 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

- backward_api : scatter_grad
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
H
hong 已提交
1366
  no_need_buffer : updates
H
hong 已提交
1367 1368

- backward_api : scatter_nd_add_grad
1369
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
H
hong 已提交
1370 1371 1372 1373 1374 1375
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
1376
    func : scatter_nd_add_grad
H
hong 已提交
1377
  no_need_buffer : updates
H
hong 已提交
1378

1379 1380 1381 1382
- backward_api : segment_pool_grad
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
H
hong 已提交
1383
  infer_meta :
1384 1385
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1386
  kernel :
1387
    func : segment_pool_grad
1388
    data_type : x
H
hong 已提交
1389
  optional : summed_ids
H
hong 已提交
1390

1391 1392 1393 1394
- backward_api : selu_grad
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
H
hong 已提交
1395
  infer_meta :
1396 1397
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1398
  kernel :
1399
    func : selu_grad
H
hong 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409
- backward_api : sigmoid_cross_entropy_with_logits_grad
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sigmoid_cross_entropy_with_logits_grad
H
hong 已提交
1410

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
- backward_api : sigmoid_double_grad
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad

1422 1423 1424 1425 1426 1427 1428 1429 1430
- backward_api : sigmoid_grad
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  backward : sigmoid_double_grad

- backward_api : sigmoid_triple_grad
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
    func : sigmoid_double_grad
H
hong 已提交
1442

1443 1444 1445
- backward_api : silu_grad
  forward : silu (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1446 1447 1448 1449 1450
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1451
    func : silu_grad
H
hong 已提交
1452

1453 1454 1455 1456
- backward_api : sin_grad
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1457
  infer_meta :
1458 1459
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1460
  kernel :
1461
    func : sin_grad
H
hong 已提交
1462

1463 1464 1465 1466
- backward_api : sinh_grad
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1467
  infer_meta :
1468 1469
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1470
  kernel :
1471
    func : sinh_grad
H
hong 已提交
1472

H
hong 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481
- backward_api : slice_grad
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
H
hong 已提交
1482
  no_need_buffer : input
H
hong 已提交
1483

1484 1485 1486 1487
- backward_api : soft_shrink_grad
  forward : soft_shrink (Tensor x, float lambda) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float lambda)
  output : Tensor(x_grad)
H
hong 已提交
1488 1489
  infer_meta :
    func : UnchangedInferMeta
1490
    param : [x]
H
hong 已提交
1491
  kernel :
1492
    func : soft_shrink_grad
H
hong 已提交
1493

1494 1495 1496 1497 1498 1499 1500 1501 1502
- backward_api : softmax_grad
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
H
hong 已提交
1503

1504
- backward_api : split_grad
1505
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
1506 1507 1508 1509
  args : (Tensor[] out_grad, Scalar axis)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.
H
hong 已提交
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
- backward_api : sqrt_grad
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad

- backward_api : square_grad
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
- backward_api : squeeze_grad
  forward : squeeze(Tensor x, int[] axes) -> Tensor(xshape), Tensor(out)
  args : (Tensor xshape, Tensor out_grad, int[] axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad

1541 1542 1543
- backward_api : stack_grad
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
1544 1545 1546 1547 1548 1549 1550
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
1551 1552
  no_need_buffer : x

1553 1554 1555 1556 1557 1558 1559 1560 1561
- backward_api : strided_slice_grad
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
H
hong 已提交
1562
  no_need_buffer : x
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572
- backward_api : subtract_grad
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
H
hong 已提交
1573
  no_need_buffer : x, y
H
hong 已提交
1574

F
From00 已提交
1575 1576 1577 1578 1579 1580 1581 1582 1583
- backward_api : sum_grad
  forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=paddle::experimental::DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
H
hong 已提交
1584
  no_need_buffer : x
F
From00 已提交
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
- backward_api : swish_grad
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad

1596 1597 1598 1599 1600 1601 1602 1603 1604
- backward_api : take_along_axis_grad
  forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : take_along_axis_grad
H
hong 已提交
1605

1606 1607 1608
- backward_api : tan_grad
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1609 1610 1611 1612 1613
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1614
    func : tan_grad
H
hong 已提交
1615

1616 1617 1618 1619
- backward_api : tanh_grad
  forward : tanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1620
  infer_meta :
1621 1622
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1623
  kernel :
1624
    func : tanh_grad
H
hong 已提交
1625

1626 1627
- backward_api : tanh_shrink_grad
  forward : tanh_shrink (Tensor x) -> Tensor(out)
Z
zhangbo9674 已提交
1628 1629 1630 1631 1632 1633
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1634
    func : tanh_shrink_grad
H
hong 已提交
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644
- backward_api : thresholded_relu_grad
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
H
hong 已提交
1645

1646
- backward_api : tile_grad
1647 1648
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
1649 1650 1651 1652 1653 1654
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
H
hong 已提交
1655
  no_need_buffer : x
H
hong 已提交
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
- backward_api : top_k_grad
  forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

1667 1668 1669 1670 1671 1672 1673 1674 1675
- backward_api : trace_grad
  forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : trace_grad
H
hong 已提交
1676
  no_need_buffer : x
H
hong 已提交
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686
- backward_api : transpose_grad
  forward : transpose (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : transpose_grad
H
hong 已提交
1687

F
From00 已提交
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
- backward_api : tril_triu_grad
  forward : tril_triu(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : tril_triu_grad

1698 1699 1700 1701 1702 1703 1704 1705 1706
- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad
H
hong 已提交
1707

1708 1709 1710 1711 1712 1713
- backward_api : unbind_grad
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

1714 1715 1716 1717 1718 1719 1720 1721 1722
- backward_api : unfold_grad
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
H
hong 已提交
1723
  no_need_buffer : x
H
hong 已提交
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
- backward_api : unsqueeze_grad
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(xshape), Tensor(out)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad

1735 1736 1737 1738 1739 1740 1741 1742 1743
- backward_api : where_grad
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
H
hong 已提交
1744
  no_need_buffer : x, y