test_layer.cc 14.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
20

J
Jiabin Yang 已提交
21 22 23
#include <memory>
#include <string>
#include <vector>
24

J
Jiabin Yang 已提交
25
#include "gtest/gtest.h"
26 27 28
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
J
Jiabin Yang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41
#include "paddle/fluid/imperative/layer.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
template <typename VarType>
class TestRuntimeInferVarTypeContext
    : public RuntimeInferVarTypeContext<VarType> {
 public:
  TestRuntimeInferVarTypeContext(const NameVarMap<VarType>& inputs,
                                 const NameVarMap<VarType>& outputs,
                                 const framework::AttributeMap& attrs_map)
      : RuntimeInferVarTypeContext<VarType>(inputs, outputs, attrs_map) {}

  bool HasVar(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::HasVar(name);
  }

  const std::vector<std::string>& InputVars(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::InputVars(name);
  }

  const std::vector<std::string>& OutputVars(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::OutputVars(name);
  }

  framework::proto::VarType::Type GetVarType(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarType(name);
  }

  void SetVarType(const std::string& name,
                  framework::proto::VarType::Type type) {
    RuntimeInferVarTypeContext<VarType>::SetVarType(name, type);
  }

  framework::proto::VarType::Type GetVarDataType(
      const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarDataType(name);
  }

  void SetVarDataType(const std::string& name,
                      framework::proto::VarType::Type type) {
    RuntimeInferVarTypeContext<VarType>::SetVarDataType(name, type);
  }

  std::vector<framework::proto::VarType::Type> GetVarDataTypes(
      const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarDataTypes(name);
  }

  void SetVarDataTypes(
      const std::string& name,
      const std::vector<framework::proto::VarType::Type>& multiple_data_type) {
    RuntimeInferVarTypeContext<VarType>::SetVarDataTypes(name,
                                                         multiple_data_type);
  }

  std::vector<int64_t> GetVarShape(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarShape(name);
  }

  void SetVarShape(const std::string& name, const std::vector<int64_t>& dims) {
    RuntimeInferVarTypeContext<VarType>::SetVarShape(name, dims);
  }

  int32_t GetVarLoDLevel(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarLoDLevel(name);
  }

  void SetVarLoDLevel(const std::string& name, int32_t lod_level) {
    RuntimeInferVarTypeContext<VarType>::SetVarLoDLevel(name, lod_level);
  }
};

J
Jiabin Yang 已提交
111 112 113
TEST(test_layer, test_runtime_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
114 115
  std::shared_ptr<imperative::VarBase> vin_b(
      new imperative::VarBase(false, "vin_b"));
J
Jiabin Yang 已提交
116 117
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
118 119 120 121
  std::shared_ptr<imperative::VarBase> vout_b(
      new imperative::VarBase(false, "vout_b"));
  var_pair in_pair = var_pair("X", {vin, vin_b});
  var_pair out_pair = var_pair("Out", {vout, vout_b});
J
Jiabin Yang 已提交
122 123 124
  imperative::NameVarBaseMap ins = {in_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap attrs;
125 126 127 128 129

  auto* ctx =
      new imperative::TestRuntimeInferVarTypeContext<imperative::VarBase>(
          ins, outs, attrs);

J
Jiabin Yang 已提交
130 131 132
  ASSERT_TRUE(ctx->HasInput("X"));
  ASSERT_TRUE(ctx->HasOutput("Out"));

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  ASSERT_EQ(2u, ctx->InputSize("X"));
  ASSERT_EQ("vin", ctx->InputVarName("X", 0));

  ASSERT_TRUE(ctx->InputTypeAnyOf("X", framework::proto::VarType::LOD_TENSOR));
  ASSERT_TRUE(ctx->InputTypeAllOf("X", framework::proto::VarType::LOD_TENSOR));

  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetInputType("X"));
  ASSERT_EQ(framework::proto::VarType::FP32, ctx->GetInputDataType("X"));

  ctx->SyncTypeAndDataType("X", "Out");

  ASSERT_EQ(framework::proto::VarType::FP32, vout->DataType());

  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetOutputType("Out"));

  ctx->SetOutputType("Out", framework::proto::VarType::SELECTED_ROWS,
                     framework::ALL_ELEMENTS);
  ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR_ARRAY);
  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());
  ASSERT_EQ(framework::proto::VarType::SELECTED_ROWS, vout_b->Type());

  ctx->SetOutputDataType("Out", framework::proto::VarType::FP64,
                         framework::ALL_ELEMENTS);
  ctx->SetOutputDataType("Out", framework::proto::VarType::INT8);

  ASSERT_EQ(framework::proto::VarType::INT8, vout->DataType());
  ASSERT_EQ(framework::proto::VarType::FP64, vout_b->DataType());

  // no throw, but do nothing
  ASSERT_NO_THROW(
      ctx->InsertVar("vout", framework::proto::VarType::LOD_TENSOR));
  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());

  ASSERT_ANY_THROW(ctx->HasVar("vin"));
  ASSERT_ANY_THROW(ctx->InputVars("X"));
  ASSERT_ANY_THROW(ctx->OutputVars("Out"));
  ASSERT_ANY_THROW(ctx->GetVarType("vin"));
  ASSERT_ANY_THROW(
      ctx->SetVarType("vin", framework::proto::VarType::LOD_TENSOR));
  ASSERT_ANY_THROW(ctx->GetVarDataType("vin"));
  ASSERT_ANY_THROW(
      ctx->SetVarDataType("vout", framework::proto::VarType::FP32));

  ASSERT_ANY_THROW(ctx->GetVarDataTypes("vin"));
J
Jiabin Yang 已提交
177
  std::vector<framework::proto::VarType::Type> NullType;
178 179 180 181 182 183 184
  ASSERT_ANY_THROW(ctx->SetVarDataTypes("vin", NullType));
  ASSERT_ANY_THROW(ctx->GetVarShape("vin"));
  ASSERT_ANY_THROW(ctx->SetVarShape("vin", {}));
  ASSERT_ANY_THROW(ctx->GetVarLoDLevel("vin"));
  ASSERT_ANY_THROW(ctx->SetVarLoDLevel("vin", 2));

  ASSERT_TRUE(ctx->IsDygraph());
J
Jiabin Yang 已提交
185 186
}

187 188 189
std::string LayerDebugString(const std::string& op_type,
                             const NameVarBaseMap& ins,
                             const NameVarBaseMap& outs);
J
Jiabin Yang 已提交
190

191 192
TEST(test_layer, test_debug_string) {
  platform::CPUPlace place;
J
Jiabin Yang 已提交
193 194 195
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  var_pair in_pair = var_pair("X", vb_vector(1, vin));
196

197
  auto test_func = [&](std::shared_ptr<imperative::VarBase>& vout) {
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    var_pair out_pair = var_pair("Out", vb_vector(1, vout));
    imperative::NameVarBaseMap ins = {in_pair};
    imperative::NameVarBaseMap outs = {out_pair};
    return LayerDebugString("test_op", ins, outs);
  };

  // 1. test null
  std::shared_ptr<imperative::VarBase> null_out(nullptr);
  std::string res_null = test_func(null_out);
  ASSERT_TRUE(res_null.find("NULL") != std::string::npos);

  // 2. test uninit var
  std::shared_ptr<imperative::VarBase> un_init_out(
      new imperative::VarBase(false, "un_init_out"));
  std::string res_un_init = test_func(un_init_out);
  ASSERT_TRUE(res_un_init.find("NOT_INITED_VAR") != std::string::npos);

  // 3. test unresolved type
  std::shared_ptr<imperative::VarBase> ut_out(
      new imperative::VarBase(false, "ut_out"));
  ut_out->MutableVar()->GetMutable<framework::LoDTensorArray>();
  std::string res_ut = test_func(ut_out);
  ASSERT_TRUE(res_ut.find("UNRESOLVED_TYPE") != std::string::npos);

  // 4. test uninit lod tensor
  std::shared_ptr<imperative::VarBase> lod_tensor(
      new imperative::VarBase(false, "lod_tensor"));
  auto tensor_l = lod_tensor->MutableVar()->GetMutable<framework::LoDTensor>();
  std::string res_ui_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_ui_lod_t.find("NOT_INITED") != std::string::npos);

  // 5. test init lod tensor
  tensor_l->mutable_data<float>(place);
  std::string res_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_lod_t.find("LoDTensor") != std::string::npos);

  // 6. test uninit selected rows
  std::shared_ptr<imperative::VarBase> selected_rows(
      new imperative::VarBase(false, "selected_rows"));
  auto tensor_sr = selected_rows->MutableVar()
                       ->GetMutable<framework::SelectedRows>()
                       ->mutable_value();
  std::string res_ui_sr = test_func(selected_rows);
  ASSERT_TRUE(res_ui_sr.find("NOT_INITED") != std::string::npos);

  // 7. test init selected rows
  tensor_sr->mutable_data<float>(place);
  std::string res_sr = test_func(selected_rows);
  ASSERT_TRUE(res_sr.find("SelectedRows") != std::string::npos);
J
Jiabin Yang 已提交
247 248
}

249
static std::shared_ptr<imperative::GradOpNode> CreateGradNode(
250 251 252
    size_t id, const std::string& type, const imperative::NameVarBaseMap& ins,
    const imperative::NameVarBaseMap& outs,
    const framework::AttributeMap& attrs, const platform::Place& place) {
253
  auto node = std::make_shared<imperative::GradOpNode>();
254
  auto* op = &(node->emplace_back());
255 256 257 258
  op->SetId(id);
  op->SetPlace(place);
  op->SetType(type);
  op->SetAttrMap(attrs);
259
  for (auto& pair : ins) {
260
    std::vector<std::shared_ptr<VariableWrapper>> vars;
261
    for (auto& var : pair.second) {
262 263
      vars.emplace_back(var->SharedVar());
    }
264
    op->SetInput(pair.first, vars, false);
265 266
  }

267
  for (auto& pair : outs) {
268
    std::vector<std::shared_ptr<VariableWrapper>> vars;
269
    for (auto& var : pair.second) {
270 271
      vars.emplace_back(var->SharedVar());
    }
272
    op->SetOutput(pair.first, vars, false);
273 274
  }

275
  return node;
276 277
}

J
Jiabin Yang 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291
TEST(test_layer, test_clear_backward_info) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;
292

293 294 295 296 297 298
  auto node = CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
  auto pending_node =
      CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
  node->InsertGradPendingNode(pending_node);

  ASSERT_EQ(node->size(), 1UL);
299
  auto* op = &(node->back());
300

301 302
  ASSERT_GT(op->GetInsMap().size(), 0UL);
  ASSERT_GT(op->GetOutsMap().size(), 0UL);
J
Jiabin Yang 已提交
303 304 305

  op->ClearBackwardTrace();

306 307
  ASSERT_EQ(op->GetInsMap().size(), 0UL);
  ASSERT_EQ(op->GetOutsMap().size(), 0UL);
J
Jiabin Yang 已提交
308 309 310 311 312 313 314 315 316
}

TEST(test_layer, test_varbase_basic) {
  platform::CPUPlace place;
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  std::shared_ptr<imperative::VarBase> vout(vin->NewVarBase(place, false));
317
  ASSERT_EQ(vout->Name(), "vin0");
J
Jiabin Yang 已提交
318 319 320 321

  std::shared_ptr<imperative::VarBase> vin_with_grad(
      new imperative::VarBase(true, "vin"));
  ASSERT_ANY_THROW(vin->MutableGradVar());
322
  ASSERT_NO_THROW(ASSERT_TRUE(dynamic_cast<framework::Variable*>(
J
Jiabin Yang 已提交
323
                                  vin_with_grad->MutableGradVar()) != 0));
324 325
  ASSERT_TRUE(
      dynamic_cast<framework::Variable*>(vin_with_grad->MutableGradVar()) != 0);
326 327
  vin_with_grad->SetOverridedStopGradient(false);
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
328
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetPersistable(true));
329
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
330 331 332 333 334
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetName("new_name"));
  ASSERT_EQ(vin_with_grad->Name(), "new_name");
}
// TODO(jiabin): Add more ut here for layer

H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
TEST(test_layer, test_dygraph_execution_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  paddle::platform::CPUPlace cpu_place;

354
  paddle::platform::DeviceContextPool& pool =
H
hong 已提交
355
      paddle::platform::DeviceContextPool::Instance();
356
  auto* dev_ctx = pool.Get(cpu_place);
H
hong 已提交
357 358 359
  paddle::framework::RuntimeContext ctx({}, {});
  framework::Scope scope;

360
  DygraphExecutionContext<imperative::VarBase> dy_exe_context(
P
phlrain 已提交
361
      *(op.get()), scope, *dev_ctx, ctx, ins, outs, concat_att_map, {});
H
hong 已提交
362 363 364 365 366

  ASSERT_EQ(dy_exe_context.InputSize("X"), 1u);
  ASSERT_EQ(dy_exe_context.InputName("X"), "vin");
  ASSERT_EQ(dy_exe_context.HasAttr("axis"), true);
  auto attr_map = dy_exe_context.Attrs();
367
  ASSERT_EQ(BOOST_GET(int, attr_map["axis"]), 1);
H
hong 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  ASSERT_EQ(dy_exe_context.OutputSize("Out"), 1u);
  ASSERT_EQ(dy_exe_context.HasOutput("Out"), true);
}

TEST(test_layer, test_dygraph_infershape_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

388
  DygraphInferShapeContext<imperative::VarBase> infer_shape_ctx(
389
      &ins, &outs, &concat_att_map, "dummy");
H
hong 已提交
390 391 392 393 394 395 396

  bool have_x = infer_shape_ctx.HasOutputs("Out");
  ASSERT_EQ(have_x, true);
  bool have_z = infer_shape_ctx.HasOutputs("Z");
  ASSERT_EQ(have_z, false);
}

397 398 399 400 401 402 403 404 405
TEST(test_layer, test_inner_op_not_inited) {
  OpBase op;
  std::string kUnknown = "unknown";
  ASSERT_EQ(op.Type(), kUnknown);
  ASSERT_THROW(op.Info(), platform::EnforceNotMet);
  ASSERT_THROW(op.InnerOp(), platform::EnforceNotMet);
  ASSERT_THROW(op.CheckAttrs(), platform::EnforceNotMet);
}

J
Jiabin Yang 已提交
406 407 408 409
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);