test_layer.cc 14.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-16.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
24 25 26
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
J
Jiabin Yang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/imperative/layer.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename VarType>
class TestRuntimeInferVarTypeContext
    : public RuntimeInferVarTypeContext<VarType> {
 public:
  TestRuntimeInferVarTypeContext(const NameVarMap<VarType>& inputs,
                                 const NameVarMap<VarType>& outputs,
                                 const framework::AttributeMap& attrs_map)
      : RuntimeInferVarTypeContext<VarType>(inputs, outputs, attrs_map) {}

  bool HasVar(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::HasVar(name);
  }

  const std::vector<std::string>& InputVars(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::InputVars(name);
  }

  const std::vector<std::string>& OutputVars(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::OutputVars(name);
  }

  framework::proto::VarType::Type GetVarType(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarType(name);
  }

  void SetVarType(const std::string& name,
                  framework::proto::VarType::Type type) {
    RuntimeInferVarTypeContext<VarType>::SetVarType(name, type);
  }

  framework::proto::VarType::Type GetVarDataType(
      const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarDataType(name);
  }

  void SetVarDataType(const std::string& name,
                      framework::proto::VarType::Type type) {
    RuntimeInferVarTypeContext<VarType>::SetVarDataType(name, type);
  }

  std::vector<framework::proto::VarType::Type> GetVarDataTypes(
      const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarDataTypes(name);
  }

  void SetVarDataTypes(
      const std::string& name,
      const std::vector<framework::proto::VarType::Type>& multiple_data_type) {
    RuntimeInferVarTypeContext<VarType>::SetVarDataTypes(name,
                                                         multiple_data_type);
  }

  std::vector<int64_t> GetVarShape(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarShape(name);
  }

  void SetVarShape(const std::string& name, const std::vector<int64_t>& dims) {
    RuntimeInferVarTypeContext<VarType>::SetVarShape(name, dims);
  }

  int32_t GetVarLoDLevel(const std::string& name) const {
    return RuntimeInferVarTypeContext<VarType>::GetVarLoDLevel(name);
  }

  void SetVarLoDLevel(const std::string& name, int32_t lod_level) {
    RuntimeInferVarTypeContext<VarType>::SetVarLoDLevel(name, lod_level);
  }
};

J
Jiabin Yang 已提交
109 110 111
TEST(test_layer, test_runtime_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
112 113
  std::shared_ptr<imperative::VarBase> vin_b(
      new imperative::VarBase(false, "vin_b"));
J
Jiabin Yang 已提交
114 115
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
116 117 118 119
  std::shared_ptr<imperative::VarBase> vout_b(
      new imperative::VarBase(false, "vout_b"));
  var_pair in_pair = var_pair("X", {vin, vin_b});
  var_pair out_pair = var_pair("Out", {vout, vout_b});
J
Jiabin Yang 已提交
120 121 122
  imperative::NameVarBaseMap ins = {in_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap attrs;
123 124 125 126 127

  auto* ctx =
      new imperative::TestRuntimeInferVarTypeContext<imperative::VarBase>(
          ins, outs, attrs);

J
Jiabin Yang 已提交
128 129 130
  ASSERT_TRUE(ctx->HasInput("X"));
  ASSERT_TRUE(ctx->HasOutput("Out"));

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  ASSERT_EQ(2u, ctx->InputSize("X"));
  ASSERT_EQ("vin", ctx->InputVarName("X", 0));

  ASSERT_TRUE(ctx->InputTypeAnyOf("X", framework::proto::VarType::LOD_TENSOR));
  ASSERT_TRUE(ctx->InputTypeAllOf("X", framework::proto::VarType::LOD_TENSOR));

  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetInputType("X"));
  ASSERT_EQ(framework::proto::VarType::FP32, ctx->GetInputDataType("X"));

  ctx->SyncTypeAndDataType("X", "Out");

  ASSERT_EQ(framework::proto::VarType::FP32, vout->DataType());

  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR, ctx->GetOutputType("Out"));

  ctx->SetOutputType("Out", framework::proto::VarType::SELECTED_ROWS,
                     framework::ALL_ELEMENTS);
  ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR_ARRAY);
  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());
  ASSERT_EQ(framework::proto::VarType::SELECTED_ROWS, vout_b->Type());

  ctx->SetOutputDataType("Out", framework::proto::VarType::FP64,
                         framework::ALL_ELEMENTS);
  ctx->SetOutputDataType("Out", framework::proto::VarType::INT8);

  ASSERT_EQ(framework::proto::VarType::INT8, vout->DataType());
  ASSERT_EQ(framework::proto::VarType::FP64, vout_b->DataType());

  // no throw, but do nothing
  ASSERT_NO_THROW(
      ctx->InsertVar("vout", framework::proto::VarType::LOD_TENSOR));
  ASSERT_EQ(framework::proto::VarType::LOD_TENSOR_ARRAY, vout->Type());

  ASSERT_ANY_THROW(ctx->HasVar("vin"));
  ASSERT_ANY_THROW(ctx->InputVars("X"));
  ASSERT_ANY_THROW(ctx->OutputVars("Out"));
  ASSERT_ANY_THROW(ctx->GetVarType("vin"));
  ASSERT_ANY_THROW(
      ctx->SetVarType("vin", framework::proto::VarType::LOD_TENSOR));
  ASSERT_ANY_THROW(ctx->GetVarDataType("vin"));
  ASSERT_ANY_THROW(
      ctx->SetVarDataType("vout", framework::proto::VarType::FP32));

  ASSERT_ANY_THROW(ctx->GetVarDataTypes("vin"));
J
Jiabin Yang 已提交
175
  std::vector<framework::proto::VarType::Type> NullType;
176 177 178 179 180 181 182
  ASSERT_ANY_THROW(ctx->SetVarDataTypes("vin", NullType));
  ASSERT_ANY_THROW(ctx->GetVarShape("vin"));
  ASSERT_ANY_THROW(ctx->SetVarShape("vin", {}));
  ASSERT_ANY_THROW(ctx->GetVarLoDLevel("vin"));
  ASSERT_ANY_THROW(ctx->SetVarLoDLevel("vin", 2));

  ASSERT_TRUE(ctx->IsDygraph());
J
Jiabin Yang 已提交
183 184
}

185 186 187
std::string LayerDebugString(const std::string& op_type,
                             const NameVarBaseMap& ins,
                             const NameVarBaseMap& outs);
J
Jiabin Yang 已提交
188

189 190
TEST(test_layer, test_debug_string) {
  platform::CPUPlace place;
J
Jiabin Yang 已提交
191 192 193
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  var_pair in_pair = var_pair("X", vb_vector(1, vin));
194

195
  auto test_func = [&](std::shared_ptr<imperative::VarBase>& vout) {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    var_pair out_pair = var_pair("Out", vb_vector(1, vout));
    imperative::NameVarBaseMap ins = {in_pair};
    imperative::NameVarBaseMap outs = {out_pair};
    return LayerDebugString("test_op", ins, outs);
  };

  // 1. test null
  std::shared_ptr<imperative::VarBase> null_out(nullptr);
  std::string res_null = test_func(null_out);
  ASSERT_TRUE(res_null.find("NULL") != std::string::npos);

  // 2. test uninit var
  std::shared_ptr<imperative::VarBase> un_init_out(
      new imperative::VarBase(false, "un_init_out"));
  std::string res_un_init = test_func(un_init_out);
  ASSERT_TRUE(res_un_init.find("NOT_INITED_VAR") != std::string::npos);

  // 3. test unresolved type
  std::shared_ptr<imperative::VarBase> ut_out(
      new imperative::VarBase(false, "ut_out"));
  ut_out->MutableVar()->GetMutable<framework::LoDTensorArray>();
  std::string res_ut = test_func(ut_out);
  ASSERT_TRUE(res_ut.find("UNRESOLVED_TYPE") != std::string::npos);

  // 4. test uninit lod tensor
  std::shared_ptr<imperative::VarBase> lod_tensor(
      new imperative::VarBase(false, "lod_tensor"));
  auto tensor_l = lod_tensor->MutableVar()->GetMutable<framework::LoDTensor>();
  std::string res_ui_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_ui_lod_t.find("NOT_INITED") != std::string::npos);

  // 5. test init lod tensor
  tensor_l->mutable_data<float>(place);
  std::string res_lod_t = test_func(lod_tensor);
  ASSERT_TRUE(res_lod_t.find("LoDTensor") != std::string::npos);

  // 6. test uninit selected rows
  std::shared_ptr<imperative::VarBase> selected_rows(
      new imperative::VarBase(false, "selected_rows"));
  auto tensor_sr = selected_rows->MutableVar()
                       ->GetMutable<framework::SelectedRows>()
                       ->mutable_value();
  std::string res_ui_sr = test_func(selected_rows);
  ASSERT_TRUE(res_ui_sr.find("NOT_INITED") != std::string::npos);

  // 7. test init selected rows
  tensor_sr->mutable_data<float>(place);
  std::string res_sr = test_func(selected_rows);
  ASSERT_TRUE(res_sr.find("SelectedRows") != std::string::npos);
J
Jiabin Yang 已提交
245 246
}

247
static std::shared_ptr<imperative::GradOpNode> CreateGradNode(
248 249 250
    size_t id, const std::string& type, const imperative::NameVarBaseMap& ins,
    const imperative::NameVarBaseMap& outs,
    const framework::AttributeMap& attrs, const platform::Place& place) {
251
  auto node = std::make_shared<imperative::GradOpNode>();
252
  auto* op = &(node->emplace_back());
253 254 255 256
  op->SetId(id);
  op->SetPlace(place);
  op->SetType(type);
  op->SetAttrMap(attrs);
257
  for (auto& pair : ins) {
258
    std::vector<std::shared_ptr<VariableWrapper>> vars;
259
    for (auto& var : pair.second) {
260 261
      vars.emplace_back(var->SharedVar());
    }
262
    op->SetInput(pair.first, vars, false);
263 264
  }

265
  for (auto& pair : outs) {
266
    std::vector<std::shared_ptr<VariableWrapper>> vars;
267
    for (auto& var : pair.second) {
268 269
      vars.emplace_back(var->SharedVar());
    }
270
    op->SetOutput(pair.first, vars, false);
271 272
  }

273
  return node;
274 275
}

J
Jiabin Yang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289
TEST(test_layer, test_clear_backward_info) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;
290

291 292 293 294 295 296
  auto node = CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
  auto pending_node =
      CreateGradNode(0, "mul", ins, outs, concat_att_map, place);
  node->InsertGradPendingNode(pending_node);

  ASSERT_EQ(node->size(), 1UL);
297
  auto* op = &(node->back());
298

299 300
  ASSERT_GT(op->GetInsMap().size(), 0UL);
  ASSERT_GT(op->GetOutsMap().size(), 0UL);
J
Jiabin Yang 已提交
301 302 303

  op->ClearBackwardTrace();

304 305
  ASSERT_EQ(op->GetInsMap().size(), 0UL);
  ASSERT_EQ(op->GetOutsMap().size(), 0UL);
J
Jiabin Yang 已提交
306 307 308 309 310 311 312 313 314
}

TEST(test_layer, test_varbase_basic) {
  platform::CPUPlace place;
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  std::shared_ptr<imperative::VarBase> vout(vin->NewVarBase(place, false));
315
  ASSERT_EQ(vout->Name(), "vin0");
J
Jiabin Yang 已提交
316 317 318 319

  std::shared_ptr<imperative::VarBase> vin_with_grad(
      new imperative::VarBase(true, "vin"));
  ASSERT_ANY_THROW(vin->MutableGradVar());
320
  ASSERT_NO_THROW(ASSERT_TRUE(dynamic_cast<framework::Variable*>(
J
Jiabin Yang 已提交
321
                                  vin_with_grad->MutableGradVar()) != 0));
322 323
  ASSERT_TRUE(
      dynamic_cast<framework::Variable*>(vin_with_grad->MutableGradVar()) != 0);
324 325
  vin_with_grad->SetOverridedStopGradient(false);
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
326
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetPersistable(true));
327
  ASSERT_FALSE(vin_with_grad->OverridedStopGradient());
J
Jiabin Yang 已提交
328 329 330 331 332
  ASSERT_NO_FATAL_FAILURE(vin_with_grad->SetName("new_name"));
  ASSERT_EQ(vin_with_grad->Name(), "new_name");
}
// TODO(jiabin): Add more ut here for layer

H
hong 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
TEST(test_layer, test_dygraph_execution_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

  auto op = framework::OpRegistry::CreateOp("mul", {}, {}, {}, false);
  paddle::platform::CPUPlace cpu_place;

352
  paddle::platform::DeviceContextPool& pool =
H
hong 已提交
353
      paddle::platform::DeviceContextPool::Instance();
354
  auto* dev_ctx = pool.Get(cpu_place);
H
hong 已提交
355 356 357
  paddle::framework::RuntimeContext ctx({}, {});
  framework::Scope scope;

358
  DygraphExecutionContext<imperative::VarBase> dy_exe_context(
359
      *(op.get()), scope, *dev_ctx, ctx, ins, outs, concat_att_map);
H
hong 已提交
360 361 362 363 364

  ASSERT_EQ(dy_exe_context.InputSize("X"), 1u);
  ASSERT_EQ(dy_exe_context.InputName("X"), "vin");
  ASSERT_EQ(dy_exe_context.HasAttr("axis"), true);
  auto attr_map = dy_exe_context.Attrs();
365
  ASSERT_EQ(BOOST_GET(int, attr_map["axis"]), 1);
H
hong 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  ASSERT_EQ(dy_exe_context.OutputSize("Out"), 1u);
  ASSERT_EQ(dy_exe_context.HasOutput("Out"), true);
}

TEST(test_layer, test_dygraph_infershape_context) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair y_pair = var_pair("Y", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair, y_pair};
  imperative::NameVarBaseMap outs = {out_pair};

  framework::AttributeMap concat_att_map;
  concat_att_map["axis"] = 1;

386 387
  DygraphInferShapeContext<imperative::VarBase> infer_shape_ctx(
      &ins, &outs, &concat_att_map);
H
hong 已提交
388 389 390 391 392 393 394

  bool have_x = infer_shape_ctx.HasOutputs("Out");
  ASSERT_EQ(have_x, true);
  bool have_z = infer_shape_ctx.HasOutputs("Z");
  ASSERT_EQ(have_z, false);
}

395 396 397 398 399 400 401 402 403
TEST(test_layer, test_inner_op_not_inited) {
  OpBase op;
  std::string kUnknown = "unknown";
  ASSERT_EQ(op.Type(), kUnknown);
  ASSERT_THROW(op.Info(), platform::EnforceNotMet);
  ASSERT_THROW(op.InnerOp(), platform::EnforceNotMet);
  ASSERT_THROW(op.CheckAttrs(), platform::EnforceNotMet);
}

J
Jiabin Yang 已提交
404 405 406 407
}  // namespace imperative
}  // namespace paddle

USE_OP(mul);