test_sparse_activation_dev_api.cc 3.1 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>

17
#include <memory>
Z
zhangkaihuo 已提交
18 19 20

#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
21 22
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
Z
zhangkaihuo 已提交
23 24 25 26 27
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/activation_grad_kernel.h"
#include "paddle/phi/kernels/activation_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
28 29
#include "paddle/phi/kernels/sparse/unary_grad_kernel.h"
#include "paddle/phi/kernels/sparse/unary_kernel.h"
Z
zhangkaihuo 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace phi {
namespace tests {

TEST(DEV_API, sparse_relu) {
  std::vector<float> data = {0, -1, 0, 2, 0, 0, -3, 0, 4, 5, 0, 0};
  phi::CPUContext dev_ctx_cpu;
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
  dev_ctx_cpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());

  DenseTensor dense_x =
      phi::Empty(dev_ctx_cpu,
                 DenseTensorMeta(DataType::FLOAT32, {3, 4}, DataLayout::NCHW));
  memcpy(dense_x.data<float>(), data.data(), data.size() * sizeof(float));
50
  auto sparse_coo = sparse::DenseToCoo<float>(dev_ctx_cpu, dense_x, 2);
Z
zhangkaihuo 已提交
51

52
  auto sparse_out = sparse::ReluCoo<float>(dev_ctx_cpu, sparse_coo);
Z
zhangkaihuo 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  DenseTensor dense_out =
      phi::EmptyLike<float>(dev_ctx_cpu, sparse_out.non_zero_elements());
  ReluKernel<float>(dev_ctx_cpu, sparse_coo.non_zero_elements(), &dense_out);

  int cmp = memcmp(dense_out.data<float>(),
                   sparse_out.non_zero_elements().data<float>(),
                   dense_out.numel() * sizeof(float));
  ASSERT_EQ(cmp, 0);
  // backward
  DenseTensor dense_grad_x = phi::EmptyLike<float>(dev_ctx_cpu, dense_out);
  ReluGradKernel<float>(
      dev_ctx_cpu, sparse_coo.non_zero_elements(), dense_out, &dense_grad_x);
  SparseCooTensor sparse_grad_x(
      phi::EmptyLike<int>(dev_ctx_cpu, sparse_coo.non_zero_indices()),
      phi::EmptyLike<int>(dev_ctx_cpu, sparse_coo.non_zero_elements()),
      {3, 4});

  SparseCooTensor sparse_out_grad(
      sparse_coo.non_zero_indices(), dense_out, {3, 4});
72
  sparse::ReluCooGradKernel<float>(
Z
zhangkaihuo 已提交
73 74 75 76 77 78 79 80 81 82
      dev_ctx_cpu, sparse_coo, sparse_out_grad, &sparse_grad_x);

  cmp = memcmp(dense_grad_x.data<float>(),
               sparse_grad_x.non_zero_elements().data<float>(),
               dense_grad_x.numel() * sizeof(float));
  ASSERT_EQ(cmp, 0);
}

}  // namespace tests
}  // namespace phi