test_auto_parallel_reshard.py 14.5 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
import paddle.distributed.auto_parallel as auto
25
from paddle.distributed.auto_parallel.completion import Completer
26
from paddle.distributed.auto_parallel.dist_context import DistributedContext
C
caozhou 已提交
27
from paddle.distributed import fleet
28
from paddle.distributed.auto_parallel.parallelizer import AutoParallelizer
C
caozhou 已提交
29
from paddle.distributed.auto_parallel.partitioner import Partitioner
30
from paddle.distributed.auto_parallel.reshard import Resharder
31
from paddle.distributed.auto_parallel.process_group import _g_process_group_map, ProcessGroup
32
from paddle.distributed.auto_parallel.utils import print_program_with_dist_attr
C
caozhou 已提交
33 34 35 36 37 38 39 40 41

paddle.enable_static()
_global_parallel_strategy = None
_global_process_mesh = None
PP_MESH_0 = None
PP_MESH_1 = None


class MLPLayer(nn.Layer):
42

C
caozhou 已提交
43 44 45 46 47 48 49
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
50 51
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
C
caozhou 已提交
52 53
        bias_attr = None

54 55 56 57 58 59 60 61
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
C
caozhou 已提交
62 63 64 65
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        if _global_parallel_strategy == "pp":
66 67 68 69 70 71 72 73 74 75
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": PP_MESH_0,
                                  "dims_mapping": [-1, -1]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": PP_MESH_1,
                                  "dims_mapping": [-1, -1]
                              })
C
caozhou 已提交
76
        else:
77 78 79 80 81 82 83 84 85 86
            auto.shard_tensor(self.linear0.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })
            auto.shard_tensor(self.linear1.weight,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })
C
caozhou 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)

        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
102 103 104 105 106 107
        input = static.data(name="input",
                            shape=[batch_size, hidden_size],
                            dtype='float32')
        label = static.data(name="label",
                            shape=[batch_size, 1],
                            dtype='float32')
C
caozhou 已提交
108 109

        if _global_parallel_strategy == "pp":
110 111 112 113 114 115 116 117 118 119
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": PP_MESH_0,
                                  "dims_mapping": [-1, -1]
                              })
            auto.shard_tensor(label,
                              dist_attr={
                                  "process_mesh": PP_MESH_1,
                                  "dims_mapping": [-1, -1]
                              })
C
caozhou 已提交
120
        elif _global_parallel_strategy == "dp":
121 122 123 124 125
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [0, -1]
                              })
C
caozhou 已提交
126
        else:
127 128 129 130 131 132 133 134 135
            auto.shard_tensor(input,
                              dist_attr={
                                  "process_mesh": _global_process_mesh,
                                  "dims_mapping": [-1, -1]
                              })

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       initializer_range=0.02)
C
caozhou 已提交
136 137 138 139 140 141 142 143

        predict = mlp(input)
        error_cost = paddle.nn.functional.square_error_cost(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


144 145 146 147 148
def get_dist_prog(train_program,
                  startup_program,
                  dist_context,
                  rank_id,
                  change_process_mesh=False):
C
caozhou 已提交
149 150 151
    loss, train_program, startup_program = mlp_forward(train_program,
                                                       startup_program)

152 153 154 155 156 157
    fleet._user_defined_strategy = fleet.DistributedStrategy()
    fleet.user_defined_optimizer = paddle.fluid.optimizer.AdamOptimizer()
    parallelizer = AutoParallelizer(fleet)
    parallelizer._dist_context = dist_context

    # serial forward & backward completion
158 159 160
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
        train_program)
161
    dist_context.block_state.parse_forward_blocks(complete_train_program)
162 163 164
    if change_process_mesh:
        global PP_MESH_1
        dist_context.get_tensor_dist_attr_for_program(
165 166
            train_program.global_block(
            ).vars["gelu_0.tmp_0"]).process_mesh = PP_MESH_1
167

168 169 170 171 172 173
    params_grads = parallelizer._generate_backward(complete_train_program,
                                                   startup_program,
                                                   loss,
                                                   parameter_list=None,
                                                   no_grad_set=None,
                                                   callbacks=None)
174

C
caozhou 已提交
175
    # logical partition
176 177 178 179 180 181 182
    partitioner = Partitioner(dist_context, rank_id)
    auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads = partitioner.partition(
        complete_train_program, startup_program, params_grads)

    partitioned_optimize_ops = parallelizer._apply_optimize(
        auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads)

183
    return auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads
C
caozhou 已提交
184 185 186 187 188 189


def check_backward_dist_attr(dist_context, dist_main_prog, op_need_check):
    has_dist_attr = True
    vars = dist_main_prog.global_block().vars

190 191
    op_dist_attr = dist_context.get_op_dist_attr_for_program(op_need_check)
    if not op_dist_attr or not op_dist_attr.process_mesh:
C
caozhou 已提交
192 193 194 195
        has_dist_attr = False

    for var_name in op_need_check.input_arg_names:
        if not op_dist_attr.get_input_dims_mapping(var_name) or \
196 197
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
        not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
198 199 200 201 202
            has_dist_attr = False
            break

    if has_dist_attr:
        for var_name in op_need_check.output_arg_names:
203 204
            if not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).dims_mapping or \
            not dist_context.get_tensor_dist_attr_for_program(vars[var_name]).process_mesh:
C
caozhou 已提交
205 206 207 208 209 210 211 212 213 214
                has_dist_attr = False
                break

    return has_dist_attr


def check_send_recv_result(dist_main_prog, rank_id):
    send_result = False
    recv_result = False
    ops = dist_main_prog.global_block().ops
215

C
caozhou 已提交
216 217 218 219 220 221 222 223 224 225 226
    if rank_id == 0:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0" in op.input_arg_names:
                send_result = True
            if op.type == "recv_v2" and "gelu_0.tmp_0@GRAD" in op.output_arg_names[
                    0]:
                recv_result = True
    else:
        for idx, op in enumerate(ops):
            if op.type == "send_v2" and "gelu_0.tmp_0@GRAD" in op.input_arg_names:
                send_result = True
227
            if op.type == "recv_v2" and "gelu_0.tmp_0" in op.output_arg_names[0]:
C
caozhou 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                recv_result = True

    return send_result and recv_result


def check_initialization(dist_startup_prog, rank_id):
    if rank_id == 0:
        need_check_params = [
            "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0",
            "linear_0.b_0"
        ]
    else:
        need_check_params = ['linear_1.w_0', 'linear_1.b_0']

    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)

    return params == need_check_params


def check_initialization_for_dp(dist_startup_prog):
    need_check_params = [
        "layer_norm_0.b_0", "layer_norm_0.w_0", "linear_0.w_0", "linear_0.b_0"
    ] + ['linear_1.w_0', 'linear_1.b_0']
    params = []
    for var_name, var in dist_startup_prog.global_block().vars.items():
        if var.is_parameter:
            params.append(var_name)
    broadcast_varnames = []
    for op in dist_startup_prog.global_block().ops:
        if op.type == "c_broadcast":
            broadcast_varnames.append(op.output_arg_names[0])

263 264
    return sorted(params) == sorted(need_check_params) == sorted(
        broadcast_varnames)
C
caozhou 已提交
265 266 267


class TestMLPReshard(unittest.TestCase):
268

C
caozhou 已提交
269 270
    def test_complete_backward_annotation(self):
        global _global_process_mesh
271
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
272 273 274 275 276

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
277
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
            train_program, startup_program, dist_context, 0)

        op_need_check = None
        for op in dist_main_prog.global_block().ops:
            if op.type == "gelu_grad":
                op_need_check = op
                break

        # grad op should have dist attr
        self.assertTrue(
            check_backward_dist_attr(dist_context, dist_main_prog,
                                     op_need_check))

291 292 293 294
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
295 296 297 298
    def test_mlp_pp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
299
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
300
        global PP_MESH_0
301
        PP_MESH_0 = auto.ProcessMesh(mesh=[0])
C
caozhou 已提交
302
        global PP_MESH_1
303
        PP_MESH_1 = auto.ProcessMesh(mesh=[1])
C
caozhou 已提交
304 305 306 307 308

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
309
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
310
            train_program, startup_program, dist_context, rank_id)
311 312 313
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
C
caozhou 已提交
314 315 316 317 318 319

        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))
        # parameter initialization of every rank should be different in the pipeline scene
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

320 321 322 323
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

324
    def test_mlp_pp_diff_process_mesh(self):
325 326 327 328 329 330 331 332 333
        global _global_parallel_strategy
        _global_parallel_strategy = "pp"
        global _global_process_mesh
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
        global PP_MESH_0
        PP_MESH_0 = auto.ProcessMesh(mesh=[0])
        global PP_MESH_1
        PP_MESH_1 = auto.ProcessMesh(mesh=[1])

334 335 336 337
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 1
338
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
339
            train_program, startup_program, dist_context, rank_id, True)
340 341 342
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
343 344 345 346
        # check send and recv result
        self.assertTrue(check_send_recv_result(dist_main_prog, rank_id))
        self.assertTrue(check_initialization(dist_startup_prog, rank_id))

347 348 349 350
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
351 352 353 354
    def test_mlp_dp(self):
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
        global _global_process_mesh
355
        _global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
C
caozhou 已提交
356 357 358 359 360

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        dist_context = DistributedContext()
        rank_id = 0
361
        dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog(
C
caozhou 已提交
362
            train_program, startup_program, dist_context, rank_id)
363 364 365
        resharder = Resharder(dist_main_prog, dist_startup_prog, rank_id,
                              dist_context, dist_params_grads)
        resharder.reshard()
366

C
caozhou 已提交
367 368 369 370 371
        # send and recv should not exist in dp scene.
        self.assertFalse(check_send_recv_result(dist_main_prog, rank_id))
        # all parameters should be initialized in dp scene
        self.assertTrue(check_initialization_for_dp(dist_startup_prog))

372 373 374 375
        # clear _g_process_group_map
        _g_process_group_map.clear()
        _g_process_group_map[0] = ProcessGroup(0, [])

C
caozhou 已提交
376 377 378

if __name__ == "__main__":
    unittest.main()