sequence_slice_op.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
17
#include "paddle/operators/math/math_function.h"
18 19 20 21 22 23 24 25 26 27
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

template <typename T>
28 29
inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data,
                           const int64_t* length_data) {
30
  auto out_lod = in.lod();
31 32
  size_t lod_offset = 0;

33
  auto n = in.lod()[0].size() - 1;
34 35
  out_lod[0][0] = 0;
  for (size_t i = 0; i < n; ++i) {
36
    lod_offset += length_data[i];
37 38 39 40 41 42
    out_lod[0][i+1] = lod_offset;
  }
  return out_lod;
}

template <typename Place, typename T>
43
class SequenceSliceOpKernel : public framework::OpKernel<T> {
44 45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
47 48
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
49 50
    auto* out = ctx.Output<LoDTensor>("Out");

51 52 53 54 55 56 57 58 59 60 61 62
    auto lod = in->lod();
    auto n = lod[0].size() - 1;

    PADDLE_ENFORCE_EQ(lod.size(), 1UL,
                      "Only support one level sequence now.");
    PADDLE_ENFORCE_EQ(
        n, length->dims()[0],
        "The size of input-sequence and length-array should be the same")
    PADDLE_ENFORCE_EQ(
        n, offset->dims()[0],
        "The size of input-sequence and offset-array should be the same")

63 64
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
65 66
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
67 68 69 70 71 72 73 74 75 76

    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
      offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
      offset_data = offset_cpu.data<int64_t>();

      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
      length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
      length_data = length_cpu.data<int64_t>();
    }
77 78

    for (size_t i = 0; i < n; ++i) {
79 80 81 82 83 84 85 86
      PADDLE_ENFORCE_LT(0, offset_data[i],
                "The offset must greater than zero")
      PADDLE_ENFORCE_LT(0, length_data[i],
                "The length must greater than zero")
      PADDLE_ENFORCE_LT(
          lod[0][i] + offset_data[i] + length_data[i],
          lod[0][i + 1],
          "The target tensor's length overflow")}
87 88

    out->mutable_data<T>(ctx.GetPlace());
89
    auto out_lod = SequenceSliceLoD(*in, offset_data, length_data);
90 91 92
    auto out_dims = in->dims();
    out_dims[0] = out_lod[0][out_lod[0].size() - 1];
    out->Resize(out_dims);
93 94 95 96 97 98 99
    out->set_lod(out_lod);

    auto in_stride = framework::stride(in->dims());
    auto out_stride = framework::stride(out->dims());

    size_t out_offset = 0;
    for (size_t i = 0; i < n; ++i) {
100 101 102
      Tensor in_t =
          in->Slice(static_cast<int>(lod[0][i] + offset_data[i]),
                    static_cast<int>(lod[0][i] + offset_data[i] +
103
                                     length_data[i]));
104 105 106 107

      StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(),
                       in_stride, in_t.dims(), out_stride,
                       out->data<T>() + out_offset);
108
      out_offset += length_data[i] * in_stride[0];
109 110 111 112 113
    }
  }
};

template <typename Place, typename T>
114
class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
115 116 117
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<LoDTensor>("X");
118 119
    auto* offset = ctx.Input<Tensor>("Offset");
    auto* length = ctx.Input<Tensor>("Length");
120 121 122 123 124
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto* x_grad =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));

125 126
    const int64_t* offset_data = offset->data<int64_t>();
    const int64_t* length_data = length->data<int64_t>();
W
wanghaox 已提交
127 128
    framework::Tensor offset_cpu;
    framework::Tensor length_cpu;
129

130 131 132 133
    if (platform::is_gpu_place(ctx.GetPlace())) {
      offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
      offset_cpu.CopyFrom(*offset, platform::CPUPlace(), ctx.device_context());
      offset_data = offset_cpu.data<int64_t>();
134

135 136 137
      length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
      length_cpu.CopyFrom(*length, platform::CPUPlace(), ctx.device_context());
      length_data = length_cpu.data<int64_t>();
138 139
    }

140
    auto lod = in->lod();
141
    auto out_lod = out_grad->lod();
142 143

    x_grad->mutable_data<T>(ctx.GetPlace());
144 145
    math::SetConstant<Place, T> set_zero;
    set_zero(ctx.device_context(), x_grad, static_cast<T>(0));
146 147 148 149 150 151 152 153 154 155 156

    auto out_grad_stride = framework::stride(out_grad->dims());

    for (size_t i = 0; i < out_lod[0].size() - 1; ++i) {
      Tensor out_grad_t =
          out_grad->Slice(static_cast<int>(out_lod[0][i]),
                          static_cast<int>(out_lod[0][i + 1]));
      auto out_grad_stride = framework::stride(out_grad_t.dims());

      auto x_grad_stride = framework::stride(x_grad->dims());

157 158 159
      Tensor x_grad_t = x_grad->Slice(
          static_cast<int>(lod[0][i] + offset_data[i]),
          static_cast<int>(lod[0][i] + offset_data[i] + length_data[i]));
160 161 162 163 164 165 166 167 168 169

      StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>(),
                       out_grad_stride, out_grad_t.dims(), x_grad_stride,
                       x_grad_t.data<T>());
    }
  }
};

}  // namespace operators
}  // namespace paddle