test_softmax_op.py 6.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
Q
qijun 已提交
19
from op_test import OpTest
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
Q
qijun 已提交
23 24 25 26


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
27 28 29
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
30 31 32 33
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
34
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
35 36 37
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
38 39 40
    def get_axis(self):
        return -1

Q
qijun 已提交
41
    def setUp(self):
Q
fix bug  
qijun 已提交
42
        self.op_type = "softmax"
43
        self.use_cudnn = False
K
Kexin Zhao 已提交
44
        self.use_mkldnn = False
K
Kexin Zhao 已提交
45 46
        self.dtype = np.float32
        self.init_kernel_type()
F
fengjiayi 已提交
47
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
48
        self.axis = self.get_axis()
F
fengjiayi 已提交
49 50

        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
51
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
52 53 54

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
55
        self.attrs = {
D
dengkaipeng 已提交
56
            'axis': self.axis,
57
            'use_cudnn': self.use_cudnn,
58
            'use_mkldnn': self.use_mkldnn
59
        }
60

K
Kexin Zhao 已提交
61
    def init_kernel_type(self):
62
        pass
Q
qijun 已提交
63

Q
qijun 已提交
64
    def test_check_output(self):
65 66 67 68 69
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Q
qijun 已提交
70

Q
qijun 已提交
71
    def test_check_grad(self):
C
chengduo 已提交
72
        if self.use_cudnn or self.dtype == np.float16:
73
            place = core.CUDAPlace(0)
C
chengduo 已提交
74 75 76
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ["X"], "Out", max_relative_error=0.01)
77 78 79 80
        else:
            self.check_grad(["X"], "Out", max_relative_error=0.01)


81 82 83 84 85 86 87
class TestSoftmaxOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of softmax_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.softmax, x1)
88
            # The input dtype of softmax_op must be float16, float32 or float64.
89 90
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.softmax, x2)
91 92
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16")
            fluid.layers.softmax(x3)
93 94


F
fengjiayi 已提交
95 96 97 98 99
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


124
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
125 126 127 128 129 130 131
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


132 133
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
134
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
135 136 137 138
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
139 140 141 142 143 144 145
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
146 147
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
148
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
149 150 151 152
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
153
        return 3
D
dengkaipeng 已提交
154 155


156 157
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
158 159 160 161 162 163 164 165 166 167
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
168 169 170 171
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

172

F
fengjiayi 已提交
173 174
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
C
chengduo 已提交
175 176 177 178 179 180 181 182 183 184
class TestSoftmaxFP16Op2(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

F
fengjiayi 已提交
185 186 187 188
    def get_x_shape(self):
        return [2, 3, 4, 5]


189 190
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
191 192
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
193
        self.use_cudnn = True
K
Kexin Zhao 已提交
194 195 196 197 198 199 200
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
201 202


F
fengjiayi 已提交
203 204 205 206 207 208 209
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


C
caoying03 已提交
210
if __name__ == "__main__":
Q
qijun 已提交
211
    unittest.main()