test_softmax_op.py 3.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
qijun 已提交
15 16
import unittest
import numpy as np
Q
qijun 已提交
17
from op_test import OpTest
18
import paddle.fluid.core as core
Q
qijun 已提交
19 20 21 22


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
C
caoying03 已提交
23
    shiftx = x - np.max(x).clip(-64.)
Q
qijun 已提交
24 25 26 27
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
28
class TestSoftmaxOp(OpTest):
Q
qijun 已提交
29
    def setUp(self):
Q
fix bug  
qijun 已提交
30
        self.op_type = "softmax"
31
        self.use_cudnn = False
K
Kexin Zhao 已提交
32
        self.use_mkldnn = False
K
Kexin Zhao 已提交
33 34 35 36 37 38 39
        self.dtype = np.float32
        self.init_kernel_type()

        x = np.random.uniform(0.1, 1, [10, 10]).astype(self.dtype)
        out = np.apply_along_axis(stable_softmax, 1, x)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
40 41 42 43
        self.attrs = {
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn
        }
44

K
Kexin Zhao 已提交
45
    def init_kernel_type(self):
46
        pass
Q
qijun 已提交
47

Q
qijun 已提交
48
    def test_check_output(self):
49 50 51 52 53
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Q
qijun 已提交
54

Q
qijun 已提交
55
    def test_check_grad(self):
K
Kexin Zhao 已提交
56 57
        if self.dtype == np.float16:
            return
58 59 60 61 62 63 64 65
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ["X"], "Out", max_relative_error=0.01)
        else:
            self.check_grad(["X"], "Out", max_relative_error=0.01)


66 67
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
68
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
69 70 71 72
    def init_kernel_type(self):
        self.use_cudnn = True


73 74
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
75 76 77 78 79 80 81 82 83 84 85
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)


86 87
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
88 89
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
90
        self.use_cudnn = True
K
Kexin Zhao 已提交
91 92 93 94 95 96 97
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
98 99


K
Kexin Zhao 已提交
100 101
class TestSoftmaxMKLDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
102 103 104
        self.use_mkldnn = True


C
caoying03 已提交
105
if __name__ == "__main__":
Q
qijun 已提交
106
    unittest.main()