test_fusion_gru_op.py 3.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
from op_test import OpTest
from test_gru_op import gru
from test_fusion_lstm_op import fc, ACTIVATION


def fusion_gru(
        x,  # T x M
        lod,  # 1 x N
        h0,  # N x D
        wx,  # M x 3D
        wh,  # D x 3D
        bias,  # 1 x 3D
        is_reverse,
        act_state,
        act_gate):
    return gru(fc(x, wx, bias),
               lod,
               h0,
               wh,
               np.zeros(
T
tensor-tang 已提交
40
                   (1, wh.shape[1]), dtype='float32'),
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
               is_reverse,
               act_state,
               act_gate)


class TestFusionGRUOp(OpTest):
    def set_confs(self):
        pass

    def setUp(self):
        self.op_type = "fusion_gru"
        self.lod = [[2, 4, 3]]
        self.M = 3
        self.D = 5
        self.is_reverse = False
        self.with_h0 = True
        self.with_bias = True
        self.act_state = 'tanh'
        self.act_gate = 'sigmoid'
        self.set_confs()

        T = sum(self.lod[0])
        N = len(self.lod[0])

T
tensor-tang 已提交
65 66 67
        x = np.random.rand(T, self.M).astype('float32')
        wx = np.random.rand(self.M, 3 * self.D).astype('float32')
        wh = np.random.rand(self.D, 3 * self.D).astype('float32')
T
tensor-tang 已提交
68
        bias = np.random.rand(
T
tensor-tang 已提交
69 70
            1, 3 * self.D).astype('float32') if self.with_bias else np.zeros(
                (1, 3 * self.D), dtype='float32')
T
tensor-tang 已提交
71
        h0 = np.random.rand(
T
tensor-tang 已提交
72 73
            N, self.D).astype('float32') if self.with_h0 else np.zeros(
                (N, self.D), dtype='float32')
T
tensor-tang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

        _, _, _, hidden = fusion_gru(
            x, self.lod, h0, wx, wh, bias, self.is_reverse,
            ACTIVATION[self.act_state], ACTIVATION[self.act_gate])

        self.inputs = {'X': (x, self.lod), 'WeightX': wx, 'WeightH': wh}

        if self.with_bias:
            self.inputs['Bias'] = bias

        if self.with_h0:
            self.inputs['H0'] = h0

        self.outputs = {'Hidden': (hidden, self.lod)}

        self.attrs = {
            'activation': self.act_state,
            'gate_activation': self.act_gate,
            'is_reverse': self.is_reverse
        }

    def test_check_output(self):
T
tensor-tang 已提交
96 97 98
        for use_seq in {True, False}:
            self.attrs['use_seq'] = use_seq
            self.check_output()
T
tensor-tang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


class TestFusionGRUOpNoInitial(TestFusionGRUOp):
    def set_confs(self):
        self.with_h0 = False


class TestFusionGRUOpNoBias(TestFusionGRUOp):
    def set_confs(self):
        self.with_bias = False


class TestFusionGRUOpReverse(TestFusionGRUOp):
    def set_confs(self):
        self.is_reverse = True


class TestFusionGRUOpMD1(TestFusionGRUOp):
    def set_confs(self):
        self.M = 36
        self.D = 8


class TestFusionGRUOpMD2(TestFusionGRUOp):
    def set_confs(self):
        self.M = 8
        self.D = 8


class TestFusionGRUOpBS1(TestFusionGRUOp):
    def set_confs(self):
        self.lod = [[3]]
        self.D = 16


if __name__ == "__main__":
    unittest.main()