test_fusion_gru_op.py 3.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import math
from op_test import OpTest
from test_gru_op import gru
from test_fusion_lstm_op import fc, ACTIVATION


def fusion_gru(
        x,  # T x M
        lod,  # 1 x N
        h0,  # N x D
        wx,  # M x 3D
        wh,  # D x 3D
        bias,  # 1 x 3D
        is_reverse,
        act_state,
        act_gate):
    return gru(fc(x, wx, bias),
               lod,
               h0,
               wh,
               np.zeros(
                   (1, wh.shape[1]), dtype='float64'),
               is_reverse,
               act_state,
               act_gate)


class TestFusionGRUOp(OpTest):
    def set_confs(self):
        pass

    def setUp(self):
        self.op_type = "fusion_gru"
        self.lod = [[2, 4, 3]]
        self.M = 3
        self.D = 5
        self.is_reverse = False
        self.with_h0 = True
        self.with_bias = True
        self.act_state = 'tanh'
        self.act_gate = 'sigmoid'
        self.set_confs()

        T = sum(self.lod[0])
        N = len(self.lod[0])

        x = np.random.rand(T, self.M).astype('float64')
        wx = np.random.rand(self.M, 3 * self.D).astype('float64')
        wh = np.random.rand(self.D, 3 * self.D).astype('float64')
        bias = np.random.rand(
            1, 3 * self.D).astype('float64') if self.with_bias else np.zeros(
                (1, 3 * self.D), dtype='float64')
        h0 = np.random.rand(
            N, self.D).astype('float64') if self.with_h0 else np.zeros(
                (N, self.D), dtype='float64')

        _, _, _, hidden = fusion_gru(
            x, self.lod, h0, wx, wh, bias, self.is_reverse,
            ACTIVATION[self.act_state], ACTIVATION[self.act_gate])

        self.inputs = {'X': (x, self.lod), 'WeightX': wx, 'WeightH': wh}

        if self.with_bias:
            self.inputs['Bias'] = bias

        if self.with_h0:
            self.inputs['H0'] = h0

        self.outputs = {'Hidden': (hidden, self.lod)}

        self.attrs = {
            'activation': self.act_state,
            'gate_activation': self.act_gate,
            'is_reverse': self.is_reverse
        }

    def test_check_output(self):
        self.check_output(atol=1e-8)


class TestFusionGRUOpNoInitial(TestFusionGRUOp):
    def set_confs(self):
        self.with_h0 = False


class TestFusionGRUOpNoBias(TestFusionGRUOp):
    def set_confs(self):
        self.with_bias = False


class TestFusionGRUOpReverse(TestFusionGRUOp):
    def set_confs(self):
        self.is_reverse = True


class TestFusionGRUOpMD1(TestFusionGRUOp):
    def set_confs(self):
        self.M = 36
        self.D = 8


class TestFusionGRUOpMD2(TestFusionGRUOp):
    def set_confs(self):
        self.M = 8
        self.D = 8


class TestFusionGRUOpBS1(TestFusionGRUOp):
    def set_confs(self):
        self.lod = [[3]]
        self.D = 16


if __name__ == "__main__":
    unittest.main()