activation.py 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
zhiboniu 已提交
15 16 17
from ...fluid.layers import sigmoid  # noqa: F401
from ...tensor.math import tanh  # noqa: F401
from ...tensor.math import tanh_  # noqa: F401
18

19
from ...fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
F
Feiyu Chan 已提交
20 21
from ...tensor.manipulation import chunk
from ...tensor.math import multiply
22

23 24 25 26
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
27
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
28
import paddle
W
wanghuancoder 已提交
29
from paddle import _C_ops
30

31 32
__all__ = []

33

34
def elu(x, alpha=1.0, name=None):
35
    r"""
36 37
    elu activation.

38
    .. math::
39

40
        elu(x) = max(0, x) + min(0, \alpha * (e^{x}-1))
41 42 43 44 45 46

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
47

48 49
    Returns:
        A Tensor with the same data type and shape as ``x`` .
50

51 52 53
    Examples:
        .. code-block:: python

54 55
            import paddle
            import paddle.nn.functional as F
56

Z
zhupengyang 已提交
57
            x = paddle.to_tensor([[-1., 6.], [1., 15.6]])
58
            out = F.elu(x, alpha=0.2)
59 60
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
61 62 63
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
64
        return _C_ops.elu(x, 'alpha', alpha)
65 66 67 68 69 70 71 72 73 74 75 76

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
    helper = LayerHelper("elu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


77
@inplace_apis_in_dygraph_only
78 79 80 81 82
def elu_(x, alpha=1.0, name=None):
    r"""
    Inplace version of ``elu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_elu`.
    """
W
wanghuancoder 已提交
83
    return _C_ops.elu_(x, 'alpha', alpha)
84 85


86
def gelu(x, approximate=False, name=None):
87
    r"""
88 89 90
    gelu activation.

    if approximate is True
91 92 93

    .. math::

94
        gelu(x) = 0.5 * x * (1 + tanh(\sqrt{\frac{2}{\pi}} * (x + 0.044715x^{3})))
95

96
    else
97 98 99

    .. math::

100
        gelu(x) = 0.5 * x * (1 + erf(\frac{x}{\sqrt{2}}))
101

102 103 104 105 106
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
107

108 109
    Returns:
        A Tensor with the same data type and shape as ``x`` .
110

111 112 113
    Examples:
        .. code-block:: python

114 115
            import paddle
            import paddle.nn.functional as F
116

Z
zhupengyang 已提交
117 118 119 120 121 122 123
            x = paddle.to_tensor([[-1, 0.5], [1, 1.5]])
            out1 = F.gelu(x)
            # [[-0.15865529,  0.34573123],
            #  [ 0.84134471,  1.39978933]]
            out2 = F.gelu(x, True)
            # [[-0.15880799,  0.34571400],
            #  [ 0.84119201,  1.39957154]]
124 125 126
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
127
        return _C_ops.gelu(x, 'approximate', approximate)
128 129 130 131 132 133 134 135 136 137 138 139

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'gelu')
    helper = LayerHelper("gelu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='gelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'approximate': approximate})
    return out


140
def hardshrink(x, threshold=0.5, name=None):
141
    r"""
142 143 144 145 146
    hard shrinkage activation

    .. math::

        hardshrink(x)=
147 148 149 150 151 152 153
            \left\{
                \begin{array}{rcl}
                x,&  &if \ {x > threshold}  \\
                x,&  &if \ {x < -threshold}   \\
                0,&  &if \ {others} &
                \end{array}
            \right.
154 155 156 157 158 159 160 161 162 163 164 165 166

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

167 168
            import paddle
            import paddle.nn.functional as F
169

Z
zhupengyang 已提交
170
            x = paddle.to_tensor([-1, 0.3, 2.5])
171
            out = F.hardshrink(x) # [-1., 0., 2.5]
172 173 174

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
175
        return _C_ops.hard_shrink(x, 'threshold', threshold)
176 177 178 179 180 181 182 183 184 185 186 187 188

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


189
def hardtanh(x, min=-1.0, max=1.0, name=None):
190
    r"""
191 192 193 194
    hardtanh activation

    .. math::

195 196 197 198 199 200 201 202
        hardtanh(x)=
            \left\{
                \begin{array}{cll}
                    max,& & \text{if } x > max \\
                    min,& & \text{if } x < min \\
                    x,& & \text{otherwise}
                \end{array}
            \right.
203

204
    Parameters:
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        x (Tensor): The input Tensor with data type float32, float64.
        min (float, optional): The minimum value of the linear region range. Default is -1.
        max (float, optional): The maximum value of the linear region range. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            out = F.hardtanh(x) # [-1., 0.3, 1.]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
226
        return _C_ops.brelu(x, 't_min', min, 't_max', max)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardtanh')

    helper = LayerHelper('hardtanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': min,
               't_max': max})
    return out


242
def hardsigmoid(x, slope=0.1666667, offset=0.5, name=None):
243
    r"""
244 245 246 247 248 249 250 251
    hardsigmoid activation.

    A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
    which is much faster than sigmoid.

    .. math::

        hardsigmoid(x)=
252 253 254 255 256 257 258
            \left\{
                \begin{array}{lcl}
                0, & &\text{if } \ x \leq -3 \\
                1, & &\text{if } \ x \geq 3 \\
                slope * x + offset, & &\text{otherwise}
                \end{array}
            \right.
259 260 261

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
262 263
        slope (float, optional): The slope of hardsigmoid function. Default is 0.1666667.
        offset (float, optional): The offset of hardsigmoid function. Default is 0.5.
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardsigmoid(x) # [0., 1., 0.666667]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
281
        return _C_ops.hard_sigmoid(x, 'slope', slope, 'offset', offset)
282 283 284 285 286 287 288 289 290 291

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardsigmoid')

    helper = LayerHelper('hardsigmoid', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
292 293
        attrs={'slope': slope,
               'offset': offset})
294 295 296 297
    return out


def hardswish(x, name=None):
298
    r"""
299 300 301 302 303 304 305 306 307
    hardswish activation

    hardswish is proposed in MobileNetV3, and performs better in computational stability
    and efficiency compared to swish function. For more details please refer
    to: https://arxiv.org/pdf/1905.02244.pdf

    .. math::

        hardswish(x)=
308 309 310 311 312 313 314
            \left\{
                \begin{array}{cll}
                0 &, & \text{if } x \leq -3 \\
                x &, & \text{if } x \geq 3 \\
                \frac{x(x+3)}{6} &, & \text{otherwise}
                \end{array}
            \right.
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-4., 5., 1.])
            out = F.hardswish(x) # [0., 5., 0.666667]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
335
        return _C_ops.hard_swish(x)
336 337 338 339 340 341 342 343 344 345

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardswish')

    helper = LayerHelper('hardswish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='hard_swish', inputs={'X': x}, outputs={'Out': out})
    return out


346
def leaky_relu(x, negative_slope=0.01, name=None):
347
    r"""
348 349
    leaky_relu activation

350
    .. math::
351 352 353 354 355 356 357
        leaky\_relu(x)=
        \left\{
            \begin{array}{rcl}
                x, & & if \ x >= 0 \\
                negative\_slope * x, & & otherwise \\
            \end{array}
        \right.
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
375
            x = paddle.to_tensor([-2., 0., 1.])
376 377 378 379
            out = F.leaky_relu(x) # [-0.02, 0., 1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
380
        return _C_ops.leaky_relu(x, 'alpha', negative_slope)
381 382 383 384 385 386 387 388 389 390 391 392 393

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': negative_slope})
    return out


394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
def prelu(x, weight, name=None):
    """
    prelu activation.

    .. math::

        prelu(x) = max(0, x) + weight * min(0, x)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        weight (Tensor): The learnable parameter with data type same as ``x``.
            The weight shape is [1] or [in], where `in` is the input channel of ``x``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
Z
zhupengyang 已提交
420 421 422 423 424
                               [ 3.0, -4.0,  5.0, -6.0],
                               [-7.0, -8.0,  8.0,  9.0]],
                              [[ 1.0, -2.0, -3.0,  4.0],
                               [-5.0,  6.0,  7.0, -8.0],
                               [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
            x = paddle.to_tensor(data)
            w = paddle.to_tensor(np.array([0.25]).astype('float32'))
            out = F.prelu(x, w)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'prelu')
    check_variable_and_dtype(weight, 'weight',
                             ['float16', 'float32', 'float64'], 'prelu')

    assert len(weight.shape
               ) == 1, "The dim count of weight shape should be 1 in prelu()."

442
    # NOTE(): The input of this API should be ``N,C,...`` format,
443 444 445 446 447 448 449 450 451 452 453
    # which means x.shape[0] is batch_size and x.shape[0] is channel.
    mode = 'all'
    if weight.shape[0] > 1:
        assert len(
            x.shape
        ) > 1, "The dim count of x should be equal or larger than 2 in prelu() when weight shape is not [1]."
        assert weight.shape[0] == x.shape[
            1], "The weight size should be equal to x input channel in prelu() when weight shape is not [1]."
        mode = 'channel'

    if in_dygraph_mode():
W
wanghuancoder 已提交
454
        return _C_ops.prelu(x, weight, 'mode', mode)
455

456
    helper = LayerHelper('prelu', **locals())
457 458 459 460 461 462 463 464 465 466
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                "Alpha": weight},
        outputs={"Out": out},
        attrs={"mode": mode})
    return out


467
def relu(x, name=None):
468
    """
469
    relu activation.
470

471
    .. math::
472 473 474 475

        out = max(x, 0)

    Parameters:
476 477 478
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
479 480

    Returns:
481
        A Tensor with the same data type and shape as ``x`` .
482 483 484 485

    Examples:
        .. code-block:: python

486 487 488
            import paddle
            import paddle.nn.functional as F
            import numpy as np
489

490 491
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            out = F.relu(x) # [0., 0., 1.]
492 493 494
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
495
        return _C_ops.relu(x)
496

497
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')
498
    helper = LayerHelper('relu', **locals())
499 500 501 502 503
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='relu', inputs={'X': x}, outputs={'Out': out})
    return out


504
@inplace_apis_in_dygraph_only
505 506 507 508 509
def relu_(x, name=None):
    """
    Inplace version of ``relu`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_relu`.
    """
W
wanghuancoder 已提交
510
    return _C_ops.relu_(x)
511 512


513
def log_sigmoid(x, name=None):
514
    r"""
515
    log_sigmoid activation.
516

517
    .. math::
518

519
        log\_sigmoid(x) = log \frac{1}{1 + e^{-x}}
520

521 522 523 524
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
525

526 527
    Returns:
        A Tensor with the same data type and shape as ``x`` .
528

529 530 531
    Examples:
        .. code-block:: python

532 533
            import paddle
            import paddle.nn.functional as F
534

535 536
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.log_sigmoid(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
537 538 539
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
540
        return _C_ops.logsigmoid(x)
541 542

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
543 544
                             'log_sigmoid')
    helper = LayerHelper("log_sigmoid", **locals())
545 546 547
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='logsigmoid', inputs={'X': x}, outputs={'Out': out})
    return out
548 549


550
def maxout(x, groups, axis=1, name=None):
551
    r"""
552 553 554 555 556 557 558 559
    maxout activation.

    Assumed the input shape is (N, Ci, H, W).
    The output shape is (N, Co, H, W).
    Then Co = Ci/groups and the operator formula is as follows:

    .. math::

560 561 562 563 564 565 566 567 568
        \begin{array}{l}
        &out_{si+j} = \max_{k} x_{gsi + sk + j} \\
        &g = groups \\
        &s = \frac{input.size}{num\_channels} \\
        &0 \le i < \frac{num\_channels}{groups} \\
        &0 \le j < s \\
        &0 \le k < groups
        \end{array}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

    Parameters:
        x (Tensor): The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C], the data type
            of input is float32 or float64.
        groups (int, optional): The groups number of maxout. `groups` specifies the
            index of channel dimension where maxout will be performed. This must be
            a factor of number of features. Default is 1.
        axis (int, optional): The axis along which to perform maxout calculations.
            It should be 1 when data format is NCHW, be -1 or 3 when data format
            is NHWC. If ``axis`` < 0, it works the same way as :math:`axis + D` ,
            where D is the dimensions of ``x`` . ``axis`` only supports 1, 3 or -1.
            Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.rand([1, 2, 3, 4])
            # [[[[0.5002636  0.22272532 0.17402348 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.02879342 0.88725346 0.61093384 0.38833922]]
            #   [[0.5231306  0.03807496 0.91661984 0.15602879]
            #    [0.666127   0.616567   0.30741522 0.24044901]
            #    [0.7142536  0.7351477  0.31588817 0.23782359]]]]
            out = F.maxout(x, groups=2)
            # [[[[0.5231306  0.22272532 0.91661984 0.2874594 ]
            #    [0.95313174 0.6228939  0.7129065  0.7087491 ]
            #    [0.7142536  0.88725346 0.61093384 0.38833922]]]]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
607
        return _C_ops.maxout(x, 'groups', groups, 'axis', axis)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'maxout')
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3

    helper = LayerHelper('maxout', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='maxout',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'groups': groups,
               'axis': axis})
    return out


628 629 630 631 632 633
def relu6(x, name=None):
    """
    relu6 activation

    .. math::

634
        relu6(x) = min(max(0,x), 6)
635

636
    Parameters:
637 638 639 640 641 642 643 644 645 646
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

647 648 649
            import paddle
            import paddle.nn.functional as F
            import numpy as np
650

651 652
            x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
            out = F.relu6(x) # [0, 0.3, 6]
653 654 655
    """
    threshold = 6.0
    if in_dygraph_mode():
W
wanghuancoder 已提交
656
        return _C_ops.relu6(x, 'threshold', threshold)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6')
    helper = LayerHelper('relu6', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


def selu(x,
         scale=1.0507009873554804934193349852946,
         alpha=1.6732632423543772848170429916717,
         name=None):
673
    r"""
674 675 676 677
    selu activation

    .. math::

678
        selu(x)= scale *
679 680 681 682 683 684
            \left\{
                \begin{array}{lcl}
                x,& &\text{if } \ x > 0 \\
                alpha * e^{x} - alpha,& &\text{if } \ x <= 0
                \end{array}
            \right.
685

686
    Parameters:
687
        x (Tensor): The input Tensor with data type float32, float64.
688 689
        scale (float, optional): The value of scale(must be greater than 1.0) for selu. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha(must be no less than zero) for selu. Default is 1.6732632423543772848170429916717
690 691 692 693 694 695 696 697 698
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

699 700 701
            import paddle
            import paddle.nn.functional as F
            import numpy as np
702

703
            x = paddle.to_tensor(np.array([[0.0, 1.0],[2.0, 3.0]]))
704
            out = F.selu(x) # [[0, 1.050701],[2.101402, 3.152103]]
705
    """
706 707 708 709 710 711 712 713
    if scale <= 1.0:
        raise ValueError(
            "The scale must be greater than 1.0. Received: {}.".format(scale))

    if alpha < 0:
        raise ValueError(
            "The alpha must be no less than zero. Received: {}.".format(alpha))

714
    if in_dygraph_mode():
W
wanghuancoder 已提交
715
        return _C_ops.selu(x, 'scale', scale, 'alpha', alpha)
716 717 718 719 720 721 722 723 724 725 726 727 728

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'selu')
    helper = LayerHelper('selu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='selu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale': scale,
               'alpha': alpha})
    return out


M
minghaoBD 已提交
729
def silu(x, name=None):
730 731 732 733 734
    r"""
    silu activation

    .. math::

M
minghaoBD 已提交
735 736 737 738 739 740 741 742 743 744 745 746
        silu(x) = \frac{x}{1 + e^{-x}}
    
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type and shape as ``x`` .
    
    Examples:
        .. code-block:: python
747 748 749 750 751 752

            import paddle
            import paddle.nn.functional as F
            
            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = F.silu(x) # [ 0.731059, 1.761594, 2.857722, 3.928055 ]
M
minghaoBD 已提交
753 754 755
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
756
        return _C_ops.silu(x)
M
minghaoBD 已提交
757 758 759 760 761 762 763 764

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'silu')
    helper = LayerHelper("silu", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='silu', inputs={'X': x}, outputs={'Out': out})
    return out


765
def softmax(x, axis=-1, dtype=None, name=None):
766
    r"""
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

792
        softmax[i, j] = \frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

841 842 843 844 845 846
    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
847
        dtype (str, optional): The data type of the output tensor, can be float32, float64.
848 849 850 851
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
852 853
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
854 855 856 857

    Examples:
        .. code-block:: python

858 859 860
            import paddle
            import paddle.nn.functional as F
            import numpy as np
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            out1 = F.softmax(x)
            out2 = F.softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
879
    """
880 881 882

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
883
    use_cudnn = True
884 885 886

    if in_dygraph_mode():
        outs_cast = x if dtype is None \
W
wanghuancoder 已提交
887 888
            else _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.softmax(outs_cast, 'axis', axis, 'use_cudnn', use_cudnn)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

    if dtype is None:
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'softmax',
                    'If dtype is not None, it only support float32 or float64.')

    helper = LayerHelper("softmax", **locals())
    outs_cast = x
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': x},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': x.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': use_cudnn})

    return outs_softmax
917 918


919
@inplace_apis_in_dygraph_only
920 921 922 923 924 925 926 927
def softmax_(x, axis=-1, dtype=None, name=None):
    r"""
    Inplace version of ``softmax`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_nn_cn_softmax`.
    """
    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
    use_cudnn = True
W
wanghuancoder 已提交
928
    return _C_ops.softmax_(x, 'axis', axis, 'use_cudnn', use_cudnn)
929 930


931
def softplus(x, beta=1, threshold=20, name=None):
932
    r"""
933 934 935 936
    softplus activation

    .. math::

937 938
        softplus(x) = \frac{1}{beta} * \log(1 + e^{beta * x}) \\
        \text{For numerical stability, the implementation reverts to the linear function when: beta * x > threshold.}
939

940
    Parameters:
941 942 943 944 945 946 947 948 949 950 951 952
        x (Tensor): The input Tensor with data type float32, float64.
        beta (float, optional): The value of beta for softplus. Default is 1
        threshold (float, optional): The value of threshold for softplus. Default is 20
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

953 954 955
            import paddle
            import paddle.nn.functional as F
            import numpy as np
956

957 958
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
959 960
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
961
        return _C_ops.softplus(x, 'beta', beta, 'threshold', threshold)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softplus')
    helper = LayerHelper('softplus', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softplus',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'beta': beta,
               'threshold': threshold})
    return out


def softshrink(x, threshold=0.5, name=None):
977
    r"""
978 979 980 981
    softshrink activation

    .. math::

982 983 984 985 986 987 988 989
        softshrink(x)= 
            \left\{
                \begin{array}{rcl}
                x - threshold,& & \text{if } x > threshold \\
                x + threshold,& & \text{if } x < -threshold \\
                0,& &  \text{otherwise}
            \end{array}
            \right.
990

991
    Parameters:
992 993 994 995 996 997 998 999 1000 1001 1002
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold(must be no less than zero) for softplus. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1003 1004 1005
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1006

1007 1008
            x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
            out = F.softshrink(x) # [-0.4, 0, 0, 0.3]
1009
    """
1010 1011 1012 1013 1014
    if threshold < 0:
        raise ValueError(
            "The threshold must be no less than zero. Received: {}.".format(
                threshold))

1015
    if in_dygraph_mode():
W
wanghuancoder 已提交
1016
        return _C_ops.softshrink(x, 'lambda', threshold)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softshrink')
    helper = LayerHelper('softshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='softshrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'lambda': threshold})
    return out


def softsign(x, name=None):
1031
    r"""
1032 1033 1034 1035
    softsign activation

    .. math::

1036
        softsign(x) = \frac{x}{1 + |x|}
1037

1038
    Parameters:
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1049 1050 1051
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1052

1053 1054
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
1055 1056
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1057
        return _C_ops.softsign(x)
1058 1059 1060 1061 1062 1063 1064 1065 1066

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'softsign')
    helper = LayerHelper('softsign', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='softsign', inputs={'X': x}, outputs={'Out': out})
    return out


1067
def swish(x, name=None):
1068
    r"""
1069 1070 1071 1072
    swish activation.

    .. math::

1073
        swish(x) = \frac{x}{1 + e^{-x}}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([-2., 0., 1.]))
            out = F.swish(x) # [-0.238406, 0., 0.731059]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1095
        return _C_ops.swish(x, 'beta', 1.0)
1096 1097 1098 1099 1100 1101 1102 1103

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish')
    helper = LayerHelper('swish', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
H
hong19860320 已提交
1104
        attrs={'beta': 1.0})
1105 1106 1107
    return out


1108 1109 1110 1111 1112 1113
def tanhshrink(x, name=None):
    """
    tanhshrink activation

    .. math::

1114
        tanhshrink(x) = x - tanh(x)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

1127 1128 1129
            import paddle
            import paddle.nn.functional as F
            import numpy as np
1130

1131 1132
            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
1133 1134
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1135
        return _C_ops.tanh_shrink(x)
1136 1137 1138 1139 1140 1141 1142 1143 1144

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'tanhshrink')
    helper = LayerHelper('tanh_shrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh_shrink', inputs={'X': x}, outputs={'Out': out})
    return out


1145
def thresholded_relu(x, threshold=1.0, name=None):
1146
    r"""
1147 1148 1149 1150
    thresholded relu activation.

    .. math::

1151 1152 1153 1154 1155 1156 1157 1158
        thresholded\_relu(x) = 
            \left\{
                \begin{array}{rl}
                x,& \text{if } \ x > threshold \\
                0,& \text{otherwise}
                \end{array}
            \right.

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for thresholded_relu. Default is 1.0
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            import numpy as np

            x = paddle.to_tensor(np.array([2., 0., 1.]))
            out = F.thresholded_relu(x) # [2., 0., 0.]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1181
        return _C_ops.thresholded_relu(x, 'threshold', threshold)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'thresholded_relu')
    helper = LayerHelper('thresholded_relu', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='thresholded_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


1195
def log_softmax(x, axis=-1, dtype=None, name=None):
1196
    r"""
1197 1198
    This operator implements the log_softmax layer. The calculation process is
    as follows:
1199 1200 1201

    .. math::

1202 1203 1204 1205
        \begin{aligned} 
        log\_softmax[i, j] &= log(softmax(x)) \\
        &= log(\frac{\exp(X[i, j])}{\sum_j(\exp(X[i, j])})
        \end{aligned}
1206 1207

    Parameters:
1208 1209 1210 1211 1212 1213 1214
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
1215
            to ``dtype`` before the operation is performed. This is useful for
1216 1217 1218 1219 1220
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1221

1222
    Returns:
1223 1224
        A Tensor with the same shape and data type (use ``dtype`` if it is
        specified) as x.
1225 1226 1227 1228

    Examples:
        .. code-block:: python

1229 1230 1231
            import paddle
            import paddle.nn.functional as F

Z
zhupengyang 已提交
1232 1233 1234 1235 1236 1237
            x = [[[-2.0, 3.0, -4.0, 5.0],
                  [3.0, -4.0, 5.0, -6.0],
                  [-7.0, -8.0, 8.0, 9.0]],
                 [[1.0, -2.0, -3.0, 4.0],
                  [-5.0, 6.0, 7.0, -8.0],
                  [6.0, 7.0, 8.0, 9.0]]]
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            x = paddle.to_tensor(x)
            out1 = F.log_softmax(x)
            out2 = F.log_softmax(x, dtype='float64')
            # out1's data type is float32; out2's data type is float64
            # out1 and out2's value is as follows:
            # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
            #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
            #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
            #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
            #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
            #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """
1250 1251 1252

    if (dtype is not None) and (not isinstance(dtype, core.VarDesc.VarType)):
        dtype = convert_np_dtype_to_dtype_(dtype)
1253 1254

    if in_dygraph_mode():
1255
        if dtype is not None:
W
wanghuancoder 已提交
1256 1257
            x = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
        return _C_ops.log_softmax(x, 'axis', axis)
1258

1259
    if dtype is None:
1260 1261 1262 1263 1264
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'log_softmax')
    else:
        check_dtype(dtype, 'dtype', ['float32', 'float64'], 'log_softmax',
                    'If dtype is not None, it only support float32 or float64.')
1265

1266
    helper = LayerHelper("log_softmax", **locals())
1267
    out_cast = x
1268
    if dtype is not None:
1269
        out_cast = helper.create_variable_for_type_inference(dtype)
1270 1271
        helper.append_op(
            type='cast',
1272 1273 1274
            inputs={'X': x},
            outputs={'Out': out_cast},
            attrs={'in_dtype': x.dtype,
1275 1276
                   'out_dtype': dtype})

1277
    out = helper.create_variable_for_type_inference(out_cast.dtype)
1278
    helper.append_op(
1279 1280 1281 1282
        type='log_softmax',
        inputs={'X': out_cast},
        outputs={'Out': out},
        attrs={'axis': axis})
1283

1284
    return out
F
Feiyu Chan 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331


def glu(x, axis=-1, name=None):
    r"""
    The gated linear unit. The input is evenly splited into 2 parts along a 
    given axis. The first part is used as the content, and the second part is
    passed through a sigmoid function then used as the gate. The output is a
    elementwise multiplication of the content and the gate.

    .. math::

        \mathrm{GLU}(a, b) = a \otimes \sigma(b)

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        axis (int, optional): The axis along which split the input tensor. It 
            should be in range [-D, D), where D is the dimensions of ``x`` . 
            If ``axis`` < 0, it works the same way as :math:`axis + D` . 
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        A Tensor with the same data type as x. The size of the given aixs is 
        halved.
    
    Examples:
        .. code-block:: python
        
            import paddle
            from paddle.nn import functional as F
            
            x = paddle.to_tensor(
                [[-0.22014759, -1.76358426,  0.80566144,  0.04241343],
                 [-1.94900405, -1.89956081,  0.17134808, -1.11280477]]
            )
            print(F.glu(x).numpy())
            # array([[-0.15216254, -0.9004892 ],
            #        [-1.0577879 , -0.46985325]], dtype=float32)
        
    """
    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             "glu")
    a, b = chunk(x, 2, axis=axis, name=name)
    gate = sigmoid(b, name=name)
    out = paddle.multiply(a, gate, name=name)
    return out