optimizer.py 70.5 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33 34 35 36
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
import copy
37

38
__all__ = [
Q
qiaolongfei 已提交
39
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
40
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
41
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
42
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
43
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer'
44
]
Q
Qiao Longfei 已提交
45 46 47 48 49 50


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
51 52
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
53 54
    """

X
Xin Pan 已提交
55
    def __init__(self, learning_rate, regularization=None, name=None):
56
        if not isinstance(learning_rate, float) and \
57 58
                not isinstance(learning_rate, framework.Variable):
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
59
        self._name = name
D
dzhwinter 已提交
60
        self.regularization = regularization
61
        self._learning_rate = learning_rate
D
dzhwinter 已提交
62 63
        # the learning rate type should be inferenced from loss
        self._dtype = None
64
        # each program should have a independent learning rate
65
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
66
        self._learning_rate_map = dict()
67
        if isinstance(self._learning_rate, framework.Variable):
68 69
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
70 71 72 73 74
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
75
        self.helper = None
76 77 78 79
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
80

Q
Qiao Longfei 已提交
81
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
82
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
83

84 85 86 87
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
88
                raise TypeError(
89 90
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
91

92 93 94 95 96 97
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
Q
Qiao Longfei 已提交
98
            dtype='float32' if self._dtype is None else self._dtype,
99 100
            persistable=True)

Y
yuyang18 已提交
101
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
102 103 104 105
        """
        get global decayed learning rate
        :return:
        """
106 107
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
108
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
109

Q
Qiao Longfei 已提交
110 111 112 113 114
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

115 116 117 118
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
119 120
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
121
        else:
W
Wu Yi 已提交
122
            if param_lr == 1.0:
Y
yuyang18 已提交
123
                return self._global_learning_rate()
W
Wu Yi 已提交
124
            else:
X
Xin Pan 已提交
125 126 127
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
128
                    return self._global_learning_rate() * param_lr
129 130 131 132 133 134 135

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
136
        """
137 138
        pass

139
    def _finish_update(self, block, parameters_and_grads):
140 141 142 143 144 145 146 147
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
148
            None
149 150 151
        """
        pass

152 153 154 155 156 157
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
158 159 160 161 162 163 164 165 166
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
167 168
        if self._name is not None:
            name = self._name + "_" + name
169 170
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
171
            if framework._in_dygraph_mode():
X
polish  
Xin Pan 已提交
172
                return self._accumulators[name][param.name]
173
            raise Exception("Accumulator {} already exists for parameter {}".
174
                            format(name, param.name))
175 176
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
177
        assert isinstance(self.helper, LayerHelper)
178 179 180 181 182

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
183
        var = self.helper.create_global_variable(
184
            name=var_name,
Q
Qiao Longfei 已提交
185
            persistable=True,
F
fengjiayi 已提交
186
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
187
            type=param.type,
188
            shape=shape)
Q
Qiao Longfei 已提交
189
        self.helper.set_variable_initializer(
190
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
191
        self._accumulators[name][param.name] = var
192
        return var
193 194 195 196 197 198 199 200 201 202 203

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
204 205
        if self._name is not None:
            name = self._name + "_" + name
206 207 208 209 210 211
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

212
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
213 214 215
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
216
          parameters_and_grads(list(tuple(Variable, Variable))):
217
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
218 219

        Returns:
220
          return_op_list: a list of operators that will complete one step of
221 222 223
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
224
        """
225 226 227 228 229
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
230
        # for parameters and extend _finish_update method to add custom ops.
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
259 260 261 262 263 264 265 266 267
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
268 269
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
285 286 287 288 289 290 291 292 293 294 295 296 297
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
298 299
        return new_param_grads, (table_param, table_grad), sgd_op

300 301 302
    def _append_dgc_ops(self, param_and_grad):
        pass

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
321

322 323
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
324

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
342

343 344
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
374 375
    def minimize(self,
                 loss,
376
                 startup_program=None,
Q
Qiao Longfei 已提交
377 378
                 parameter_list=None,
                 no_grad_set=None):
379 380 381 382 383
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
384

385 386 387 388 389 390
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
391

392 393 394
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
395
        """
396 397
        self._dtype = loss.dtype
        optimize_ops = []
L
lujun 已提交
398
        if framework._in_dygraph_mode():
M
minqiyang 已提交
399
            if parameter_list is not None:
M
minqiyang 已提交
400
                parameters = parameter_list
M
minqiyang 已提交
401
            else:
L
lujun 已提交
402
                parameters = framework._dygraph_tracer().all_parameters()
M
minqiyang 已提交
403 404 405

            params_grads = []
            for param in parameters:
406
                if not param.trainable:
407
                    continue
408 409 410 411 412 413 414 415
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
416 417
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
418
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
419
        else:
420
            program = loss.block.program
421 422 423
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
424 425 426
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
427
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
428

Q
Qiao Longfei 已提交
429
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
430 431 432


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
433 434 435 436 437 438 439 440 441 442
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
443 444 445
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
446 447 448 449

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
450
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
451
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
452 453
    """

X
Xin Pan 已提交
454
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
455
        assert learning_rate is not None
Q
Qiao Longfei 已提交
456
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
457 458 459
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
460 461
        self.type = "sgd"

462 463
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
464

Q
Qiao Longfei 已提交
465 466 467 468 469 470
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
471
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
472
            },
M
minqiyang 已提交
473 474
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
475 476

        return sgd_op
477 478 479


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

494
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
495 496 497

        & else:

Q
qiaolongfei 已提交
498
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
499 500 501 502 503 504

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
505 506 507
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
508 509 510 511

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
512
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
513
            optimizer.minimize(cost)
514 515 516
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
517 518 519 520 521 522
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
523 524
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
525
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
526 527 528
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
529 530
        self.type = "momentum"
        self._momentum = momentum
531
        self._use_nesterov = bool(use_nesterov)
532 533 534 535 536

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
537
            self._add_accumulator(self._velocity_acc_str, p)
538 539 540 541 542 543 544 545 546 547 548 549 550

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
551
                "LearningRate": self._create_param_lr(param_and_grad)
552 553 554 555 556
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
557
            attrs={"mu": self._momentum,
M
minqiyang 已提交
558 559
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
560 561

        return momentum_op
562 563


564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
class DGCMomentumOptimizer(MomentumOptimizer):
    """

    Original paper is https://arxiv.org/abs/1712.01887

    DGC reduce the communication bandwidth by sending only the important gradients (sparse update):\
        only gradients larger than a threshold are transmitted.

    To avoid losing information, DGC accumulate the rest of the gradients locally.

    Eventually, these gradients become large enough to be transmitted.

    Thus, DGC send the large gradients immediately but eventually send all of the gradients over time.

    To ensure no loss of accuracy, DGC employs momentum correc-tionandlocal gradient clipping on top of the gradient sparsification to maintain model performance.

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
        
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
    
        2. Call momentum to optimize on the cost.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor.
        rampup_begin_step (int): The begining step from which gradient compression is implemented.
        rampup_step (int): How long it use the sparsity periods. Default is 1.
            for example: If the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 5, \
                it will use 0.75 at 0 step, and 0.9375 at 1 step, and so on. And when reach sparsity array ends, \
                it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity).
        use_nesterov (bool): Enables Nesterov momentum. True means use nesterov.
        local_grad_clip_norm (float): Clip norm value if needed.
        num_trainers: The number of training node.
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DGCMomentumOptimizer(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=bd, values=lr),
                momentum=0.9,
                rampup_begin_step=1252,
                regularization=fluid.regularizer.L2Decay(1e-4))
            optimizer.minimize(cost)

    """

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
        self._sparsity = sparsity
        self._rampup_step = rampup_step
        self._rampup_step_var = None

        self._rampup_begin_step = rampup_begin_step
        self._rampup_begin_step_var = None

        self._global_step_var = None
        self._local_grad_clip_norm = None
        self._clip_norm = None

        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
            self._clip_norm = local_grad_clip_norm / (num_trainers *
                                                      num_trainers)

        super(DGCMomentumOptimizer, self).__init__(
            learning_rate, momentum, use_nesterov, regularization, name)

        core.init_dgc()

    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

    def _append_dgc_ops(self, param_and_grads):
        start_program = default_startup_program()
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
            counter_name='__g_dgc_counter__', begin=0)

        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
            name='__g_rampup_begin_step__',
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

        for param_var, grad_var in param_and_grads:
            var_numel = reduce(lambda x, y: x * y, param_var.shape)
            if var_numel < 16384 or \
                param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
                grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
                    param_var.dtype != core.VarDesc.VarType.FP32 :
                continue

            u_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_u__",
                value=0.0)
            v_var = tensor.create_global_var(
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_v__",
                value=0.0)

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_k__",
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + "__dgc_encoded__",
                value=0.0,
                force_cpu=False)

            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
                         encoded_var)

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
            name = unique_name.generate(".".join([helper.name, 'tmp']))

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
            type="clip_by_norm",
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
                x=grad_var, max_norm=clip_norm, name=grad_var.name + "@DGC")

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
                encoded_var):
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "current_step": self._global_step_var
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step)
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])


822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
902 903
            },
            stop_gradient=True)
904 905 906 907

        return momentum_op


908
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
929 930 931
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
932
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
933 934 935 936 937 938

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
939 940 941
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
942 943 944 945
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
946
                 name=None,
X
xuezhong 已提交
947
                 initial_accumulator_value=0.0):
948 949
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
950
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
951 952 953
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
954 955
        self.type = "adagrad"
        self._epsilon = epsilon
956
        self.initial_accumulator_value = initial_accumulator_value
957 958 959 960 961

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
962
            self._add_accumulator(self._moment_acc_str, p)
963 964 965 966 967 968

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
969 970 971 972 973 974 975 976 977 978
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
979

980
        # Create the adagrad optimizer op
981 982 983 984 985 986
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
987
                "LearningRate": self._create_param_lr(param_and_grad)
988 989 990
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
991 992
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
993 994

        return adagrad_op
995 996 997


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
1025
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
1026
        name: A optional name prefix.
1027 1028 1029 1030 1031 1032
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
1033 1034 1035 1036 1037 1038 1039

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

1040 1041 1042
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1043 1044
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1045 1046 1047 1048 1049

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1050
                 epsilon=1e-8,
X
Xin Pan 已提交
1051
                 regularization=None,
Q
Qiao Longfei 已提交
1052
                 name=None,
Q
Qiao Longfei 已提交
1053
                 lazy_mode=False):
1054 1055 1056 1057
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1058
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1059 1060 1061
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1062 1063 1064 1065
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1066
        self._lazy_mode = lazy_mode
1067 1068 1069 1070 1071 1072

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1073 1074
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
1087 1088 1089 1090 1091 1092 1093 1094

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1095 1096 1097 1098 1099
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1100
        # create the adam optimize op
1101 1102 1103 1104 1105
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1106
                "LearningRate": self._create_param_lr(param_and_grad),
1107 1108
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
1109 1110
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
1111 1112 1113 1114 1115 1116 1117 1118 1119
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
1120
                "epsilon": self._epsilon,
1121 1122
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
1123 1124
            },
            stop_gradient=True)
1125 1126 1127

        return adam_op

1128
    def _finish_update(self, block, param_and_grads):
1129 1130 1131
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1132
        main_block = block.program.global_block()
1133 1134 1135
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1136 1137
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
1138 1139 1140 1141 1142 1143 1144 1145
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1146 1147
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1148 1149 1150 1151 1152

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
1153 1154
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
1155 1156 1157


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1188 1189 1190
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1191 1192 1193 1194 1195 1196

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1197 1198 1199

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
1200 1201 1202
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1203
    _beta1_pow_acc_str = "beta1_pow_acc"
1204 1205 1206 1207 1208

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1209
                 epsilon=1e-8,
X
Xin Pan 已提交
1210 1211
                 regularization=None,
                 name=None):
1212 1213 1214 1215
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1216
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1217 1218 1219
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1220 1221 1222 1223 1224 1225 1226 1227
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1228 1229
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1230 1231 1232 1233 1234 1235
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
1236 1237 1238 1239 1240 1241 1242

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1243 1244
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1245 1246 1247 1248 1249 1250
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1251
                "LearningRate": self._create_param_lr(param_and_grad),
1252 1253
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1254
                "Beta1Pow": beta1_pow_acc
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1265 1266
            },
            stop_gradient=True)
1267 1268 1269

        return adamax_op

1270
    def _finish_update(self, block, parameters_and_grads):
1271 1272 1273
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1274
        main_block = block.program.global_block()
1275 1276 1277
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1278 1279
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1280 1281 1282 1283 1284 1285
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1286 1287
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1288 1289 1290


class DecayedAdagradOptimizer(Optimizer):
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1313 1314 1315
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1316 1317 1318 1319 1320 1321

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1322 1323 1324

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1325 1326 1327
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1328 1329 1330 1331 1332 1333
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1334 1335 1336 1337
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1338
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1339 1340 1341
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1369 1370
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1371 1372

        return decayed_adagrad_op
1373 1374


1375
class AdadeltaOptimizer(Optimizer):
1376 1377
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1378

1379
    Simple Adadelta optimizer with average squared grad state and
1380
    average squared update state.
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1393
        learning_rate(float): global learning rate
1394 1395
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1396 1397 1398
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1399 1400 1401 1402 1403 1404 1405

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1406 1407 1408

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1409
    """
1410

1411 1412 1413
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1414 1415 1416 1417 1418 1419
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1420 1421 1422 1423 1424 1425
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1426
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1427 1428 1429
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1430 1431 1432 1433 1434
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1435 1436
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1437 1438 1439 1440 1441 1442

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1443 1444
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1466 1467
                   "rho": self._rho},
            stop_gradient=True)
1468 1469 1470 1471

        return adadelta_op


Q
qingqing01 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1482
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1483 1484 1485 1486

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1487
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1488 1489 1490 1491 1492 1493

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1494
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1510 1511 1512 1513
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1514
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1515 1516 1517 1518 1519 1520
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1521
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1522 1523 1524
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1525
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1526
            set 0.0 by default.
1527 1528 1529 1530
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1531 1532 1533
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1547
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1548 1549 1550 1551 1552 1553

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1554
                 centered=False,
X
Xin Pan 已提交
1555 1556
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1557
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1558 1559 1560
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1574
        self._centered = centered
Q
qingqing01 已提交
1575 1576 1577 1578 1579 1580 1581 1582

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1583
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1593 1594
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1595 1596 1597 1598 1599 1600 1601
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1602
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1603 1604 1605 1606 1607
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1608 1609
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1610 1611 1612 1613
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1614 1615
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1616 1617
            },
            stop_gradient=True)
Q
qingqing01 已提交
1618 1619 1620 1621

        return rmsprop_op


Q
qiaolongfei 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1664 1665 1666
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1667 1668 1669
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1679 1680 1681

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1682 1683 1684 1685 1686
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1687 1688 1689 1690 1691 1692 1693
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1694
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1695 1696 1697
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1738 1739
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1740 1741 1742 1743

        return ftrl_op


1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1758
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1759
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1760
Ftrl = FtrlOptimizer
1761
LarsMomentum = LarsMomentumOptimizer
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1777 1778 1779
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1780
    Examples:
Q
qiaolongfei 已提交
1781 1782 1783

      .. code-block:: python

1784
        optimizer = fluid.optimizer.Momentum()
1785 1786
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1787 1788 1789 1790 1791
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1792 1793 1794 1795

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1796 1797 1798
    """

    def __init__(self,
W
wanghaoshuang 已提交
1799
                 average_window_rate,
1800 1801
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1802 1803 1804 1805
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1806 1807 1808
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1809

1810
        self.params_grads = []
1811 1812
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1813
            if param.do_model_average != False:
1814 1815 1816 1817
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1818
                    stop_gradient=True)
1819
                self.params_grads.append((param, grad))
1820

1821
        for param, grad in self.params_grads:
1822 1823
            if grad is None:
                continue
X
Xin Pan 已提交
1824 1825
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1826
                self._append_average_accumulate_op(param)
1827

1828 1829 1830 1831
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1832
                self._add_average_apply_op(block, param_grad)
1833 1834 1835 1836 1837

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1838
                self._add_average_restore_op(block, param_grad)
1839

1840
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1841 1842 1843 1844 1845 1846
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1847
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1848
        old_num_accumulates = block._clone_variable(
1849
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1850
        num_updates = block._clone_variable(
1851 1852 1853 1854 1855 1856
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1857 1858 1859 1860
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1861
        ops._elementwise_div(x=sum, y=tmp, out=param)
1862 1863

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1864 1865
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1903 1904
            },
            stop_gradient=True)
1905

S
rename  
sneaxiy 已提交
1906
    @signature_safe_contextmanager
1907
    def apply(self, executor, need_restore=True):
1908 1909
        """Apply average values to parameters of current model.
        """
1910 1911 1912 1913 1914 1915
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1916 1917 1918 1919

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1920
        executor.run(self.restore_program)