sequence_conv_op.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_conv_op.h"
C
chengduoZH 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
18 19 20
#include <memory>
#include <string>
#include <unordered_set>
Y
Yang Yang 已提交
21

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceConv");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
    int context_length = ctx->Attrs().Get<int>("contextLength");
    int context_start = ctx->Attrs().Get<int>("contextStart");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_EQ(
        ctx->Attrs().Get<int>("contextStride"), 1,
        platform::errors::InvalidArgument(
            "Currently, SequenceConvOp only supports contextStride=1. But "
            "received contextStride = %u.",
            ctx->Attrs().Get<int>("contextStride")));
    PADDLE_ENFORCE_EQ(
        in_dims.size() == 2 && filter_dims.size() == 2, true,
        platform::errors::InvalidArgument(
            "Input(X, Filter) should be 2-D tensor. But received Input(X): "
            "input rank %u, input shape [%s]; received Input(Filter): "
            "input rank %u, input shape [%s].",
            in_dims.size(), in_dims, filter_dims.size(), filter_dims));
    PADDLE_ENFORCE_EQ(
        filter_dims[0], context_length * in_dims[1],
        platform::errors::InvalidArgument(
            "Filter's height should be context_length * "
            "input_hidden_size. But received: filter's height = %d, "
            "context_length * input_hidden_size = %d.",
            filter_dims[0], context_length * in_dims[1]));
C
chengduoZH 已提交
60

C
chengduoZH 已提交
61
    if (ctx->Attrs().Get<bool>("paddingTrainable")) {
C
chengduoZH 已提交
62 63
      PADDLE_ENFORCE(
          ctx->HasInput("PaddingData"),
64 65
          platform::errors::InvalidArgument(
              "Input(PaddingData) of SequenceConvOp should not be null."));
66
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
67 68 69 70 71
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);

72
      if (context_start == 0 && context_length == 1) {
73
        PADDLE_THROW(platform::errors::InvalidArgument(
C
chengduoZH 已提交
74
            "If context_start is 0 and context_length is 1, paddingTrainable "
75
            "should be false."));
76
      }
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
      PADDLE_ENFORCE_EQ(
          padding_dim.size(), 2,
          platform::errors::InvalidArgument(
              "Input(PaddingData) should be 2-D tensor. But received: "
              "input rank %u, input shape [%s].",
              padding_dim.size(), padding_dim));
      PADDLE_ENFORCE_EQ(
          padding_dim[0] == total_pad && padding_dim[1] == input_width, true,
          platform::errors::InvalidArgument("Input(PaddingData)'s shape is not "
                                            "consistent with 'context_start' "
                                            "and 'context_length'. Received "
                                            "Input(PaddingData): input rank "
                                            "%u, "
                                            "input shape [%s].",
                                            padding_dim.size(), padding_dim));
C
chengduoZH 已提交
92 93
    }

C
chengduoZH 已提交
94
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
95
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
96
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
97 98 99
  }
};

C
chengduoZH 已提交
100
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
101 102 103 104
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
105
  void InferShape(framework::InferShapeContext *ctx) const override {
106 107 108
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SequenceConvGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConvGrad");
C
chengduoZH 已提交
109

C
chengduoZH 已提交
110
    if (ctx->Attrs().Get<bool>("paddingTrainable") &&
C
chengduoZH 已提交
111
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
112 113
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
114
    }
C
chengduoZH 已提交
115
    if (ctx->HasOutput(framework::GradVarName("X"))) {
116 117
      ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
C
chengduoZH 已提交
118
    }
C
chengduoZH 已提交
119 120 121 122
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
123 124 125
  }
};

C
chengduoZH 已提交
126
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
127
 public:
Y
Yu Yang 已提交
128
  void Make() override {
C
chengduoZH 已提交
129 130
    AddInput(
        "X",
131
        "(LoDTensor) the input(X) is a LodTensor, which supports "
C
chengduoZH 已提交
132
        "variable-time length input sequence. The underlying tensor in "
133 134
        "this LoDTensor is a matrix with shape (T, N), where T is the "
        "total time steps in this mini-batch and N is the input_hidden_size.");
C
chengduoZH 已提交
135
    AddInput("PaddingData",
C
chengduoZH 已提交
136 137
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
C
chengduoZH 已提交
138 139
             "This is a tensor with shape (P, N), where P is the "
             "top_pad + bottom_pad, N is the input_hidden_size. In order to "
C
chengduoZH 已提交
140 141 142 143
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
144
        .AsDispensable();
C
chengduoZH 已提交
145 146 147
    AddInput(
        "Filter",
        "(Tensor) the input(Filter) is an learnable parameter."
C
chengduoZH 已提交
148 149
        "This is a tensor with shape (K, M), where K is the "
        "context_length * input_hidden_size, M is the output feature size.");
C
chengduoZH 已提交
150 151 152 153
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
C
chengduoZH 已提交
154 155
        "this LoDTensor is a matrix with shape (T, M), where, T is the "
        "total time steps in this mini-batch, M is the output feature size.");
C
chengduoZH 已提交
156

C
chengduoZH 已提交
157
    AddAttr<bool>("paddingTrainable",
C
chengduoZH 已提交
158
                  "(bool, default:false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
159 160
                  "is trainable or not.")
        .SetDefault(false);
C
chengduoZH 已提交
161
    AddAttr<int>("contextLength",
C
chengduoZH 已提交
162
                 "(int) the contextLength of SequenceConvOp is the "
C
chengduoZH 已提交
163
                 "height of the convolution kernel.")
C
chengduoZH 已提交
164
        .GreaterThan(0);
C
chengduoZH 已提交
165
    AddAttr<int>("contextStart",
C
chengduoZH 已提交
166
                 "(int, default:0) the contextStart of SequenceConvOp "
C
chengduoZH 已提交
167
                 "represents the beginning of the convolution of the number of "
C
chengduoZH 已提交
168 169 170 171 172
                 "rows of sequence, which can be negative. The negative number "
                 "means to pad contextStart time-steps of zeros or learnable "
                 "parameters at the beginning of each instance. The positive "
                 "number means to skip contextStart time-steps of each "
                 "instance.")
C
chengduoZH 已提交
173
        .SetDefault(0);
C
chengduoZH 已提交
174
    AddAttr<int>("contextStride",
C
chengduoZH 已提交
175
                 "(int, default:1) the contextStride of SequenceConvOp "
C
chengduoZH 已提交
176
                 "represents the stride length of convolution kernel. "
C
chengduoZH 已提交
177
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
178
                 "contextStride=1.")
C
chengduoZH 已提交
179
        .SetDefault(1)
C
chengduoZH 已提交
180
        .GreaterThan(0);
C
chengduoZH 已提交
181 182

    AddComment(R"DOC(
183 184 185 186 187 188 189 190 191 192
Sequence Conv Operator.

SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.

C
chengduoZH 已提交
193 194 195 196
    )DOC");
  }
};

H
hong 已提交
197 198
template <typename T>
class SequenceConvGradOpMaker : public framework::SingleGradOpMaker<T> {
199
 public:
H
hong 已提交
200
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
201 202

 protected:
203
  void Apply(GradOpPtr<T> op) const override {
204
    op->SetType("sequence_conv_grad");
H
hong 已提交
205
    op->SetAttrMap(this->Attrs());
206

H
hong 已提交
207
    if (op->HasAttr("paddingTrainable") &&
208
        BOOST_GET_CONST(bool, op->GetAttr("paddingTrainable")) &&
H
hong 已提交
209 210
        this->HasInput("PaddingData")) {
      op->SetInput("PaddingData", this->Input("PaddingData"));
211
      op->SetOutput(framework::GradVarName("PaddingData"),
H
hong 已提交
212
                    this->InputGrad("PaddingData"));
213 214
    }

H
hong 已提交
215 216 217
    op->SetInput("X", this->Input("X"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
218

H
hong 已提交
219 220
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
221 222 223 224 225 226 227 228
  }
};

class SequenceConvGradNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

229 230 231
  const std::unordered_set<std::string> &operator()(
      const framework::InferNoNeedBufferVarsContext &ctx) const final {
    static const std::unordered_set<std::string> kPaddingData({"PaddingData"});
232
    if (!BOOST_GET_CONST(bool, ctx.GetAttr("paddingTrainable"))) {
233
      return kPaddingData;
234
    } else {
235
      return Empty();
236 237 238 239
    }
  }
};

C
chengduoZH 已提交
240 241 242 243
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
244
REGISTER_OPERATOR(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
H
hong 已提交
245 246
                  ops::SequenceConvGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequenceConvGradOpMaker<paddle::imperative::OpBase>);
247 248 249

REGISTER_OPERATOR(sequence_conv_grad, ops::SequenceConvGradOp,
                  ops::SequenceConvGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
250 251

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
252 253 254
    sequence_conv,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
255
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
256
    sequence_conv_grad,
Q
QI JUN 已提交
257 258
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, double>);