sequence_conv_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_conv_op.h"
C
chengduoZH 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
18 19 20
#include <memory>
#include <string>
#include <unordered_set>
Y
Yang Yang 已提交
21

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
30
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
31
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
32 33 34
                   "Input(X) of SequenceConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
35
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
36
                   "Output(Out) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39
    int context_length = ctx->Attrs().Get<int>("contextLength");
    int context_start = ctx->Attrs().Get<int>("contextStart");
C
chengduoZH 已提交
40

C
chengduoZH 已提交
41 42
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
C
chengduoZH 已提交
43 44
    PADDLE_ENFORCE(ctx->Attrs().Get<int>("contextStride") == 1,
                   "Currently, SequenceConvOp only supports contextStride=1.");
C
chengduoZH 已提交
45 46
    PADDLE_ENFORCE(in_dims.size() == 2 && filter_dims.size() == 2,
                   "Input(X, Filter) should be 2-D tensor.");
C
chengduoZH 已提交
47 48
    PADDLE_ENFORCE(filter_dims[0] == context_length * in_dims[1],
                   "Filter's height should be context_length * "
C
chengduoZH 已提交
49
                   "input_hidden_size .");
C
chengduoZH 已提交
50

C
chengduoZH 已提交
51
    if (ctx->Attrs().Get<bool>("paddingTrainable")) {
C
chengduoZH 已提交
52 53 54
      PADDLE_ENFORCE(
          ctx->HasInput("PaddingData"),
          "Input(PaddingData) of SequenceConvOp should not be null.");
55
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
56 57 58 59 60
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);

61 62
      if (context_start == 0 && context_length == 1) {
        PADDLE_THROW(
C
chengduoZH 已提交
63
            "If context_start is 0 and context_length is 1, paddingTrainable "
64 65
            "should be false.");
      }
C
chengduoZH 已提交
66 67 68 69 70 71 72 73
      PADDLE_ENFORCE(padding_dim.size() == 2,
                     "Input(PaddingData) should be 2-D tensor.");
      PADDLE_ENFORCE(
          padding_dim[0] == total_pad && padding_dim[1] == input_width,
          "Input(PaddingData)'s shape is not consistent with 'context_start' "
          "and 'context_length'.");
    }

C
chengduoZH 已提交
74
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
75
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
76
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
77 78 79
  }
};

C
chengduoZH 已提交
80
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
81 82 83 84
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
85
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
86
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
C
chengduoZH 已提交
87 88
                   "Gradient of output(Out) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input(X) should not be null.");
C
chengduoZH 已提交
89

C
chengduoZH 已提交
90
    if (ctx->Attrs().Get<bool>("paddingTrainable") &&
C
chengduoZH 已提交
91
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
92 93
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
94
    }
C
chengduoZH 已提交
95
    if (ctx->HasOutput(framework::GradVarName("X"))) {
96 97
      ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
C
chengduoZH 已提交
98
    }
C
chengduoZH 已提交
99 100 101 102
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
103 104 105
  }
};

C
chengduoZH 已提交
106
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
107
 public:
Y
Yu Yang 已提交
108
  void Make() override {
C
chengduoZH 已提交
109 110
    AddInput(
        "X",
111
        "(LoDTensor) the input(X) is a LodTensor, which supports "
C
chengduoZH 已提交
112
        "variable-time length input sequence. The underlying tensor in "
113 114
        "this LoDTensor is a matrix with shape (T, N), where T is the "
        "total time steps in this mini-batch and N is the input_hidden_size.");
C
chengduoZH 已提交
115
    AddInput("PaddingData",
C
chengduoZH 已提交
116 117
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
C
chengduoZH 已提交
118 119
             "This is a tensor with shape (P, N), where P is the "
             "top_pad + bottom_pad, N is the input_hidden_size. In order to "
C
chengduoZH 已提交
120 121 122 123
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
124
        .AsDispensable();
C
chengduoZH 已提交
125 126 127
    AddInput(
        "Filter",
        "(Tensor) the input(Filter) is an learnable parameter."
C
chengduoZH 已提交
128 129
        "This is a tensor with shape (K, M), where K is the "
        "context_length * input_hidden_size, M is the output feature size.");
C
chengduoZH 已提交
130 131 132 133
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
C
chengduoZH 已提交
134 135
        "this LoDTensor is a matrix with shape (T, M), where, T is the "
        "total time steps in this mini-batch, M is the output feature size.");
C
chengduoZH 已提交
136

C
chengduoZH 已提交
137
    AddAttr<bool>("paddingTrainable",
C
chengduoZH 已提交
138
                  "(bool, default:false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
139 140
                  "is trainable or not.")
        .SetDefault(false);
C
chengduoZH 已提交
141
    AddAttr<int>("contextLength",
C
chengduoZH 已提交
142
                 "(int) the contextLength of SequenceConvOp is the "
C
chengduoZH 已提交
143
                 "height of the convolution kernel.")
C
chengduoZH 已提交
144
        .GreaterThan(0);
C
chengduoZH 已提交
145
    AddAttr<int>("contextStart",
C
chengduoZH 已提交
146
                 "(int, default:0) the contextStart of SequenceConvOp "
C
chengduoZH 已提交
147
                 "represents the beginning of the convolution of the number of "
C
chengduoZH 已提交
148 149 150 151 152
                 "rows of sequence, which can be negative. The negative number "
                 "means to pad contextStart time-steps of zeros or learnable "
                 "parameters at the beginning of each instance. The positive "
                 "number means to skip contextStart time-steps of each "
                 "instance.")
C
chengduoZH 已提交
153
        .SetDefault(0);
C
chengduoZH 已提交
154
    AddAttr<int>("contextStride",
C
chengduoZH 已提交
155
                 "(int, default:1) the contextStride of SequenceConvOp "
C
chengduoZH 已提交
156
                 "represents the stride length of convolution kernel. "
C
chengduoZH 已提交
157
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
158
                 "contextStride=1.")
C
chengduoZH 已提交
159
        .SetDefault(1)
C
chengduoZH 已提交
160
        .GreaterThan(0);
C
chengduoZH 已提交
161 162

    AddComment(R"DOC(
163 164 165 166 167 168 169 170 171 172
Sequence Conv Operator.

SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.

C
chengduoZH 已提交
173 174 175 176
    )DOC");
  }
};

H
hong 已提交
177 178
template <typename T>
class SequenceConvGradOpMaker : public framework::SingleGradOpMaker<T> {
179
 public:
H
hong 已提交
180
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
181 182

 protected:
183
  void Apply(GradOpPtr<T> op) const override {
184
    op->SetType("sequence_conv_grad");
H
hong 已提交
185
    op->SetAttrMap(this->Attrs());
186

H
hong 已提交
187
    if (op->HasAttr("paddingTrainable") &&
188
        BOOST_GET_CONST(bool, op->GetAttr("paddingTrainable")) &&
H
hong 已提交
189 190
        this->HasInput("PaddingData")) {
      op->SetInput("PaddingData", this->Input("PaddingData"));
191
      op->SetOutput(framework::GradVarName("PaddingData"),
H
hong 已提交
192
                    this->InputGrad("PaddingData"));
193 194
    }

H
hong 已提交
195 196 197
    op->SetInput("X", this->Input("X"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
198

H
hong 已提交
199 200
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
201 202 203 204 205 206 207 208
  }
};

class SequenceConvGradNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

209 210 211
  const std::unordered_set<std::string> &operator()(
      const framework::InferNoNeedBufferVarsContext &ctx) const final {
    static const std::unordered_set<std::string> kPaddingData({"PaddingData"});
212
    if (!BOOST_GET_CONST(bool, ctx.GetAttr("paddingTrainable"))) {
213
      return kPaddingData;
214
    } else {
215
      return Empty();
216 217 218 219
    }
  }
};

C
chengduoZH 已提交
220 221 222 223
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
224
REGISTER_OPERATOR(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
H
hong 已提交
225 226
                  ops::SequenceConvGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequenceConvGradOpMaker<paddle::imperative::OpBase>);
227 228 229

REGISTER_OPERATOR(sequence_conv_grad, ops::SequenceConvGradOp,
                  ops::SequenceConvGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
230 231

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
232 233 234
    sequence_conv,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
235
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
236
    sequence_conv_grad,
Q
QI JUN 已提交
237 238
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, double>);