layer_function_generator.py 12.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
D
dzhwinter 已提交
16 17
import re
import functools
18
import warnings
Y
yuyang18 已提交
19
import string
D
dzhwinter 已提交
20

21
from six.moves import cStringIO
22
from ..proto import framework_pb2
H
hong 已提交
23
from ..framework import OpProtoHolder, Variable, core, convert_np_dtype_to_dtype_, in_dygraph_mode, _in_eager_mode
24
from ..layer_helper import LayerHelper
25
from ..data_feeder import check_variable_and_dtype
W
wanghuancoder 已提交
26
from paddle import _C_ops
D
dzhwinter 已提交
27

28
__all__ = [
29 30
    'generate_layer_fn', 'generate_activation_fn', 'generate_inplace_fn',
    'autodoc', 'templatedoc'
31
]
D
dzhwinter 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
50 51 52 53
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


54 55 56 57 58
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
59
def escape_math(text):
N
Noel 已提交
60 61 62 63 64
    #return _two_bang_pattern_.sub(
    #    r'$$\1$$',
    #    _single_dollar_pattern_.sub(r':math:\n`\1`',
    #                                _two_dollar_pattern_.sub(r"!!\1!!", text)))
    return _two_dollar_pattern_.sub(r':math:`\1`', text)
Y
yuyang18 已提交
65 66


67 68 69
def _generate_doc_string_(op_proto,
                          additional_args_lines=None,
                          skip_attrs_set=None):
D
dzhwinter 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

83
    buf = cStringIO()
84
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
85 86
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
87
        line_begin = '    {0}'.format(_convert_(each_input.name))
D
dzhwinter 已提交
88
        buf.write(line_begin)
89
        buf.write(" (Tensor): ")
90 91 92 93 94
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
95 96
        buf.write('\n')

97
    skip_attrs = OpProtoHolder.generated_op_attr_names()
98 99 100
    # attr use_mkldnn and is_test also should not be visible to users.
    skip_attrs.add("use_mkldnn")
    skip_attrs.add("is_test")
101
    skip_attrs.add("use_cudnn")
102 103 104 105 106

    if skip_attrs_set:
        for t in skip_attrs_set:
            skip_attrs.add(t)

D
dzhwinter 已提交
107
    for each_attr in op_proto.attrs:
108 109
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
110 111 112 113 114
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
115
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
116 117
        buf.write('\n')

S
sneaxiy 已提交
118 119 120 121 122 123 124
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
125 126 127 128 129 130
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
131 132
        buf.write(_convert_(each_opt.name))
        buf.write(' (Tensor): ')
133
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
134 135 136 137

    return buf.getvalue()


138
def generate_layer_fn(op_type):
139
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
140 141

    Args:
142
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
143 144 145 146 147 148 149

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
150
        [output for output in op_proto.outputs if not output.intermediate]
D
dzhwinter 已提交
151
    intermediate_outputs = \
152
        [output for output in op_proto.outputs if output.intermediate]
D
dzhwinter 已提交
153 154 155

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
156
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
157 158 159

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
160
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
161 162 163 164

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
165
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
166 167 168 169

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
170
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
171 172 173 174 175 176 177 178 179 180
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
181
            if len(val) == 0:
182 183
                if len(args) == 0:
                    continue
Y
Yu Yang 已提交
184 185 186
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
187 188 189 190 191 192 193 194 195 196 197 198
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

W
Wu Yi 已提交
199 200 201 202 203 204 205 206 207
        if dtype is None:
            arg_dtype = kwargs.get("dtype")
            if arg_dtype:
                if not isinstance(arg_dtype, core.VarDesc.VarType):
                    dtype = convert_np_dtype_to_dtype_(arg_dtype)
                else:
                    dtype = arg_dtype
            else:
                dtype = core.VarDesc.VarType.FP32
D
dzhwinter 已提交
208 209
        return dtype

Y
Yu Yang 已提交
210
    def func(*args, **kwargs):
D
dzhwinter 已提交
211 212
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
213
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
214 215 216 217 218 219 220

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
221 222 223
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
224 225 226
            inputs[ipt.name] = val

        outputs = dict()
227 228 229 230 231
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
X
Xin Pan 已提交
232
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
233
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
234
        for name in intermediate_output_names:
X
Xin Pan 已提交
235 236 237
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
D
dzhwinter 已提交
238 239
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
240
        return helper.append_activation(out_var)
D
dzhwinter 已提交
241 242 243 244 245 246

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


247
def generate_activation_fn(op_type):
248 249 250 251 252 253 254 255 256 257 258
    """Register the Python layer for an Operator without Attribute.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

T
tensor-tang 已提交
259
    def func(x, name=None):
260
        if in_dygraph_mode():
W
wanghuancoder 已提交
261
            op = getattr(_C_ops, op_type)
262
            return op(x)
263

264 265 266 267 268
        if op_type not in ["abs", "exp", "square"]:
            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     op_type)
        else:
            # abs exp square ops support dtype(int32, int64, float16, float32, float64)
269 270 271 272
            check_variable_and_dtype(x, 'x', [
                'int32', 'int64', 'float16', 'float32', 'float64', 'complex64',
                'complex128'
            ], op_type)
273

274 275
        helper = LayerHelper(op_type, **locals())

X
Xin Pan 已提交
276
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
T
tensor-tang 已提交
277
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
278 279 280
        return output

    func.__name__ = op_type
281 282 283
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
284
            "name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`."
285
        ])
286 287 288
    return func


289 290 291 292 293 294 295 296 297 298 299 300 301
def generate_inplace_fn(inplace_op_type):
    """Register the Python layer for an Inplace Operator without Attribute.

    Args:
       inplace_op_type: The name of the inplace operator to be created.

    This function takes in the inplace operator type (exp_ , ceil_ etc) and
    creates the operator functionality.
    """
    origin_op_type = inplace_op_type[:-1]

    def func(x, name=None):
        if in_dygraph_mode():
W
wanghuancoder 已提交
302
            op = getattr(_C_ops, inplace_op_type)
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            return op(x)
        warnings.warn(
            "In static mode, {}() is the same as {}() and does not perform inplace operation.".
            format(inplace_op_type, origin_op_type))
        return generate_activation_fn(origin_op_type)(x, name)

    func.__name__ = inplace_op_type
    func.__doc__ = """
Inplace version of ``{0}`` API, the output Tensor will be inplaced with input ``x``.
Please refer to :ref:`api_fluid_layers_{1}`.
""".format(origin_op_type, origin_op_type)

    return func


318 319 320 321 322 323 324
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
325 326


Y
yuyang18 已提交
327
def templatedoc(op_type=None):
Y
yuyang18 已提交
328 329 330 331 332 333 334 335 336 337
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
338
        Decorated function.
Y
yuyang18 已提交
339 340
    """

Y
yuyang18 已提交
341 342 343
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
344
    def __impl__(func):
Y
yuyang18 已提交
345 346 347 348 349
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
350
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
351 352 353 354

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
355 356
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
357
                comment += escape_math(line)
Y
yuyang18 已提交
358
                comment += " "
Y
yuyang18 已提交
359 360
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
361

Y
yuyang18 已提交
362
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
363 364
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
365 366
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
Y
yuyang18 已提交
367 368 369
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
370 371
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
Y
yuyang18 已提交
372 373 374 375
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
376 377
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
Y
yuyang18 已提交
378 379 380 381 382
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__
383 384 385 386 387 388 389 390 391 392 393


def add_sample_code(func, sample_code):
    """
    Append sample code for dynamically generated functions. 

    Args:
       func: The function of the function to be append sample code to.
       sample_code: sample code session in rst format.
    """
    func.__doc__ = func.__doc__ + sample_code