var_desc.md 3.6 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3
## Background
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.

Q
qiaolongfei 已提交
4
PaddlePaddle use proto message to describe compile time graph for
Q
qiaolongfei 已提交
5

Q
qiaolongfei 已提交
6
1. Computation graph should be able to be saved to a file.
Q
typo  
qiaolongfei 已提交
7
1. In distributed training, the graph will be serialized and send to multiple workers.
Q
qiaolongfei 已提交
8

Q
qiaolongfei 已提交
9
The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.
Q
qiaolongfei 已提交
10

Q
qiaolongfei 已提交
11 12 13 14
| |compile time|runtime|
|---|---|---|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|
Q
qiaolongfei 已提交
15 16


Q
qiaolongfei 已提交
17 18 19 20 21 22 23 24 25
## Definition of VarDesc

A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.

```proto
message VarDesc {
  required string name = 1;
  optional LoDTesnorDesc lod_tensor = 2; //
}
Q
qiaolongfei 已提交
26
```
Q
qiaolongfei 已提交
27 28 29 30

## Definition of LodTensorDesc

```proto
Q
qiaolongfei 已提交
31 32
message LoDTensorDesc {
  enum Type {
Q
qiaolongfei 已提交
33
    BOOL = 0;
Q
qiaolongfei 已提交
34 35 36 37 38
    INT16 = 1;
    INT32 = 2;
    INT64 = 3;
    FP16 = 4;
    FP32 = 5;
Q
qiaolongfei 已提交
39
    FP64 = 6
Q
qiaolongfei 已提交
40 41
  }

Q
qiaolongfei 已提交
42
  Type data_type = 1;
Q
typo  
qiaolongfei 已提交
43
  repeated int dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
Q
qiaolongfei 已提交
44 45 46 47 48 49
  optional int lod_level [default=0] = 3;
}
```

## Definition of Variable in Python

Q
qiaolongfei 已提交
50
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
Q
qiaolongfei 已提交
51 52

```python
Q
qiaolongfei 已提交
53
image = Variable(dims=[-1, 640, 480])
Q
qiaolongfei 已提交
54 55 56
# fc1 and fc2 are both Variable
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
Q
qiaolongfei 已提交
57
```
Q
qiaolongfei 已提交
58 59 60 61 62
### what should class `Variable` Have
1. `name`.a name of string type is used to mark the value of the Variable.
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a inialize method to help add the init operator.
1. `operator`. Variable should record which operator produce itself. The reaon is:
  - we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
Q
qiaolongfei 已提交
63 64

```python
Q
qiaolongfei 已提交
65 66 67 68
import VarDesc
import LoDTensorDesc
import framework

Q
qiaolongfei 已提交
69 70 71
def AddInitialOperator(variable, initializer):
	# add an initialize Operator to graph to init this Variable

Q
qiaolongfei 已提交
72
class Variable(object):
Q
qiaolongfei 已提交
73 74
   def __init__(self, name, dims, type, initializer):
      self._graph = get_default_graph()
Q
qiaolongfei 已提交
75 76
      self._name = name
      self.op = None
Q
qiaolongfei 已提交
77

Q
qiaolongfei 已提交
78 79 80
      tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
      _var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
      self._var = framework.CreateVar(_var_desc)
Q
qiaolongfei 已提交
81 82 83 84 85
      self._graph.add_var(self)

      # add initial op according to initializer
      if initializer is not None:
          AddInitialOperator(self, initializer)
Q
qiaolongfei 已提交
86 87 88 89 90 91

   def dims(self):
      return self._var.dims()

   def data_type(self):
       return self._var.data_type()
Q
qiaolongfei 已提交
92 93 94

   def to_proto(self):
       pass
Q
qiaolongfei 已提交
95 96
```

Q
typo  
qiaolongfei 已提交
97
Then we can use this Variable to create a fc layer in Python.
Q
qiaolongfei 已提交
98 99

```python
Q
qiaolongfei 已提交
100 101 102 103 104 105 106 107 108
import paddle as pd

def flatten_size(X, num_flatten_dims):
  prod = 1 # of last num_flatten_dims
  for i in xrange(num_flatten_dims):
    prod = prod * X.dims[-i-1]
  return prod

def layer.fc(X, output_size, num_flatten_dims):
Q
qiaolongfei 已提交
109 110
  W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
  b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
Q
qiaolongfei 已提交
111 112 113 114 115
  out = Variable(type=FP32)
  y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
  pd.InferShape(y)
  return out

Q
qiaolongfei 已提交
116
x = Variable(dims=[-1, 640, 480])
Q
qiaolongfei 已提交
117 118 119 120 121
y = layer.fc(x, output_size=100)
z = layer.fc(y, output_size=200)

paddle.train(z, ...)
print(y)
Q
qiaolongfei 已提交
122
```