var_desc.md 2.7 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3
## Background
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.

Q
qiaolongfei 已提交
4
PaddlePaddle use proto message to describe compile time graph for
Q
qiaolongfei 已提交
5

Q
qiaolongfei 已提交
6
1. Computation graph should be able to be saved to a file.
Q
typo  
qiaolongfei 已提交
7
1. In distributed training, the graph will be serialized and send to multiple workers.
Q
qiaolongfei 已提交
8

Q
qiaolongfei 已提交
9
The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.
Q
qiaolongfei 已提交
10

Q
qiaolongfei 已提交
11 12 13 14
| |compile time|runtime|
|---|---|---|
|Data|VarDesc(proto)|Variable(cpp)|
|Operation|OpDesc(proto)|Operator(cpp)|
Q
qiaolongfei 已提交
15 16


Q
qiaolongfei 已提交
17 18 19 20 21 22 23 24 25
## Definition of VarDesc

A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.

```proto
message VarDesc {
  required string name = 1;
  optional LoDTesnorDesc lod_tensor = 2; //
}
Q
qiaolongfei 已提交
26
```
Q
qiaolongfei 已提交
27 28 29 30

## Definition of LodTensorDesc

```proto
Q
qiaolongfei 已提交
31 32
message LoDTensorDesc {
  enum Type {
Q
qiaolongfei 已提交
33
    BOOL = 0;
Q
qiaolongfei 已提交
34 35 36 37 38
    INT16 = 1;
    INT32 = 2;
    INT64 = 3;
    FP16 = 4;
    FP32 = 5;
Q
qiaolongfei 已提交
39
    FP64 = 6
Q
qiaolongfei 已提交
40 41
  }

Q
qiaolongfei 已提交
42
  Type data_type = 1;
Q
typo  
qiaolongfei 已提交
43
  repeated int dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
Q
qiaolongfei 已提交
44 45 46 47 48 49
  optional int lod_level [default=0] = 3;
}
```

## Definition of Variable in Python

Q
qiaolongfei 已提交
50
In Python API, layer will take Variable as Input, and return Variable as Output.
Q
qiaolongfei 已提交
51 52

```python
Q
qiaolongfei 已提交
53 54 55 56
image = Variable()
# fc1 and fc2 are both Variable
fc1 = layer.fc(input=image, output_size=10)
fc2 = layer.fc(input=fc1, output_size=20)
Q
qiaolongfei 已提交
57 58
```

Q
qiaolongfei 已提交
59
There should be a class `Variable` in python to help create and manage Variable.
Q
qiaolongfei 已提交
60 61

```python
Q
qiaolongfei 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
import VarDesc
import LoDTensorDesc
import framework

class Variable(object):
   def __init__(self, name, dims, type):
      self._name = name
      self.op = None
      tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
      _var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
      self._var = framework.CreateVar(_var_desc)

   def dims(self):
      return self._var.dims()

   def data_type(self):
       return self._var.data_type()
Q
qiaolongfei 已提交
79 80
```

Q
typo  
qiaolongfei 已提交
81
Then we can use this Variable to create a fc layer in Python.
Q
qiaolongfei 已提交
82 83

```python
Q
qiaolongfei 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
import paddle as pd

def flatten_size(X, num_flatten_dims):
  prod = 1 # of last num_flatten_dims
  for i in xrange(num_flatten_dims):
    prod = prod * X.dims[-i-1]
  return prod

def layer.fc(X, output_size, num_flatten_dims):
  W = Var(type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
  b = Variable(type=FP32, dims=[output_size])
  out = Variable(type=FP32)
  y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
  pd.InferShape(y)
  return out

x = var(dim=[-1, 640, 480])
y = layer.fc(x, output_size=100)
z = layer.fc(y, output_size=200)

paddle.train(z, ...)
print(y)
Q
qiaolongfei 已提交
106
```