layer_norm_grad_kernel.cu 5.6 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/layer_norm_grad_kernel.h"

#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/layer_norm_util.h"

namespace phi {

template <typename T, typename Context>
void LayerNormGradKernel(const Context &dev_ctx,
                         const DenseTensor &x,
                         paddle::optional<const DenseTensor &> scale_opt,
                         paddle::optional<const DenseTensor &> bias_opt,
H
hong 已提交
29 30
                         const DenseTensor &mean,
                         const DenseTensor &variance,
H
hong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
                         const DenseTensor &out_grad,
                         float epsilon,
                         int begin_norm_axis,
                         bool is_test,
                         DenseTensor *x_grad,
                         DenseTensor *scale_grad,
                         DenseTensor *bias_grad) {
  using U = paddle::operators::LayerNormParamType<T>;
  // d_x, d_scale, d_bias may be nullptr
  auto *d_x = x_grad;
  auto *d_scale = scale_grad;
  auto *d_bias = bias_grad;

  auto *scale = scale_opt.get_ptr();
  auto *bias = bias_opt.get_ptr();
  auto *d_y = &out_grad;

  const auto &x_dims = x.dims();
  auto matrix_dim = phi::flatten_to_2d(x_dims, begin_norm_axis);
  int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
  int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);

  auto *x_data = x.data<T>();
  auto *d_y_data = d_y->data<T>();

  auto *mean_data = mean.data<U>();
  auto *var_data = variance.data<U>();

  auto *d_x_data = (d_x == nullptr ? nullptr : dev_ctx.template Alloc<T>(d_x));

  auto x_dtype = x.dtype();

  phi::DataType scale_bias_dtype;
  if (scale != nullptr) {
    scale_bias_dtype = scale->dtype();
  } else {
    // FIXME(zengjinle): do not find a better way to get the right
    // data type of the d_scale and d_bias if scale == nullptr.
    if (bias != nullptr) {
      scale_bias_dtype = bias->dtype();
    } else {
      scale_bias_dtype = x_dtype;
    }
  }

#define PADDLE_LAUNCH_LAYERNORM_BWD(ScaleBiasT, IsScaleBiasSameDTypeWithX)  \
  do {                                                                      \
    auto *scale_data =                                                      \
        (scale == nullptr ? nullptr : scale->data<ScaleBiasT>());           \
    auto *d_scale_data =                                                    \
        (d_scale == nullptr ? nullptr                                       \
                            : dev_ctx.template Alloc<ScaleBiasT>(d_scale)); \
    auto *d_bias_data =                                                     \
        (d_bias == nullptr ? nullptr                                        \
                           : dev_ctx.template Alloc<ScaleBiasT>(d_bias));   \
    auto *d_x_data =                                                        \
        (d_x == nullptr ? nullptr : dev_ctx.template Alloc<T>(d_x));        \
    paddle::operators::LayerNormBackward<T, U, IsScaleBiasSameDTypeWithX>(  \
        x_data,                                                             \
        d_y_data,                                                           \
        scale_data,                                                         \
        mean_data,                                                          \
        var_data,                                                           \
        d_x_data,                                                           \
        d_scale_data,                                                       \
        d_bias_data,                                                        \
        epsilon,                                                            \
        batch_size,                                                         \
        feature_size,                                                       \
        dev_ctx);                                                           \
  } while (0)

  if (scale_bias_dtype == x_dtype) {
    PADDLE_LAUNCH_LAYERNORM_BWD(T, true);
  } else {
    PADDLE_LAUNCH_LAYERNORM_BWD(U, false);
  }

#undef PADDLE_LAUNCH_LAYERNORM_BWD
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   phi::dtype::float16) {}
#elif CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#endif