layer_norm_grad_kernel.cu 5.6 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/layer_norm_grad_kernel.h"

#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/layer_norm_util.h"

namespace phi {

template <typename T, typename Context>
void LayerNormGradKernel(const Context &dev_ctx,
                         const DenseTensor &x,
                         const DenseTensor &mean,
                         const DenseTensor &variance,
                         paddle::optional<const DenseTensor &> scale_opt,
                         paddle::optional<const DenseTensor &> bias_opt,
                         const DenseTensor &out_grad,
                         float epsilon,
                         int begin_norm_axis,
                         bool is_test,
                         DenseTensor *x_grad,
                         DenseTensor *scale_grad,
                         DenseTensor *bias_grad) {
  using U = paddle::operators::LayerNormParamType<T>;
  // d_x, d_scale, d_bias may be nullptr
  auto *d_x = x_grad;
  auto *d_scale = scale_grad;
  auto *d_bias = bias_grad;

  auto *scale = scale_opt.get_ptr();
  auto *bias = bias_opt.get_ptr();
  auto *d_y = &out_grad;

  const auto &x_dims = x.dims();
  auto matrix_dim = phi::flatten_to_2d(x_dims, begin_norm_axis);
  int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
  int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);

  auto *x_data = x.data<T>();
  auto *d_y_data = d_y->data<T>();

  auto *mean_data = mean.data<U>();
  auto *var_data = variance.data<U>();

  auto *d_x_data = (d_x == nullptr ? nullptr : dev_ctx.template Alloc<T>(d_x));

  auto x_dtype = x.dtype();

  phi::DataType scale_bias_dtype;
  if (scale != nullptr) {
    scale_bias_dtype = scale->dtype();
  } else {
    // FIXME(zengjinle): do not find a better way to get the right
    // data type of the d_scale and d_bias if scale == nullptr.
    if (bias != nullptr) {
      scale_bias_dtype = bias->dtype();
    } else {
      scale_bias_dtype = x_dtype;
    }
  }

#define PADDLE_LAUNCH_LAYERNORM_BWD(ScaleBiasT, IsScaleBiasSameDTypeWithX)  \
  do {                                                                      \
    auto *scale_data =                                                      \
        (scale == nullptr ? nullptr : scale->data<ScaleBiasT>());           \
    auto *d_scale_data =                                                    \
        (d_scale == nullptr ? nullptr                                       \
                            : dev_ctx.template Alloc<ScaleBiasT>(d_scale)); \
    auto *d_bias_data =                                                     \
        (d_bias == nullptr ? nullptr                                        \
                           : dev_ctx.template Alloc<ScaleBiasT>(d_bias));   \
    auto *d_x_data =                                                        \
        (d_x == nullptr ? nullptr : dev_ctx.template Alloc<T>(d_x));        \
    paddle::operators::LayerNormBackward<T, U, IsScaleBiasSameDTypeWithX>(  \
        x_data,                                                             \
        d_y_data,                                                           \
        scale_data,                                                         \
        mean_data,                                                          \
        var_data,                                                           \
        d_x_data,                                                           \
        d_scale_data,                                                       \
        d_bias_data,                                                        \
        epsilon,                                                            \
        batch_size,                                                         \
        feature_size,                                                       \
        dev_ctx);                                                           \
  } while (0)

  if (scale_bias_dtype == x_dtype) {
    PADDLE_LAUNCH_LAYERNORM_BWD(T, true);
  } else {
    PADDLE_LAUNCH_LAYERNORM_BWD(U, false);
  }

#undef PADDLE_LAUNCH_LAYERNORM_BWD
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   phi::dtype::float16) {}
#elif CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(layer_norm_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::LayerNormGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#endif