gumbel_softmax_kernel.cu 6.6 KB
Newer Older
F
From00 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gumbel_softmax_kernel.h"
#include "paddle/phi/kernels/impl/gumbel_softmax_kernel_impl.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"

#if defined(__NVCC__) || defined(__HIPCC__)
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
template <typename K, typename V>
using KeyValuePair = cub::KeyValuePair<K, V>;

template <typename T>
struct UniformCUDAGenerator {
  T min_, max_;
  unsigned int seed_;
  unsigned int offset_ = 0;
  HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed)
      : min_(min), max_(max), seed_(seed) {}
  HOSTDEVICE UniformCUDAGenerator(T min,
                                  T max,
                                  unsigned int seed,
                                  unsigned int offset)
      : min_(min), max_(max), seed_(seed), offset_(offset) {}

  HOSTDEVICE T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n + offset_);
    return dist(rng);
  }
};

template <typename T, size_t BlockDim>
__global__ void OneHotCUDAKernel(const int64_t height,
                                 const int64_t width,
                                 const int64_t size_out_axis,
                                 const T init,
                                 const T* in,
                                 T* out) {
  typedef cub::BlockReduce<KeyValuePair<int, T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage temp_storage;

  for (int64_t idx = blockIdx.x; idx < height; idx += gridDim.x) {
    KeyValuePair<int, T> kv_pair = {-1, init};
    int h = idx / size_out_axis;
    int w = idx % size_out_axis;
    cub::ArgMax reducer;
    for (int k = threadIdx.x; k < width; k += blockDim.x) {
      kv_pair = reducer(
          {k, in[h * width * size_out_axis + k * size_out_axis + w]}, kv_pair);
    }
    kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, reducer);
    if (threadIdx.x == 0) {
      int index = static_cast<int>(kv_pair.key);
      out[h * width * size_out_axis + index * size_out_axis + w] = 1;
    }
    __syncthreads();
  }
}

template <typename T>
struct OneHotGenerator<GPUContext, T> {
  static void Transform(const GPUContext& ctx,
                        const DenseTensor& X,
                        DenseTensor* out,
                        int axis) {
    const int size_to_axis = funcs::SizeToAxis(axis, X.dims());
    const int size_from_axis = funcs::SizeFromAxis(axis, X.dims());
    const int size_out_axis = funcs::SizeOutAxis(axis, X.dims());
    constexpr int thread_size = 512;
    int64_t max_grid_dimx = ctx.GetCUDAMaxGridDimSize()[0];
    int64_t height = size_to_axis * size_out_axis;
    int block_size = height < max_grid_dimx ? height : max_grid_dimx;

    DenseTensor input_tensor;
    input_tensor.Resize(out->dims());
    ctx.template Alloc<T>(&input_tensor);
    paddle::framework::TensorCopy(*out, ctx.GetPlace(), &input_tensor);
    funcs::set_constant(ctx, out, 0.0);
    OneHotCUDAKernel<T,
                     thread_size><<<block_size, thread_size, 0, ctx.stream()>>>(
        height,
        size_from_axis / size_out_axis,
        size_out_axis,
        std::numeric_limits<T>::lowest(),
        input_tensor.data<T>(),
        out->data<T>());
  }
};

template <typename T>
__global__ void AddGumbelNoiseCUDAKernel(const T* input_data,
                                         T* output_data,
                                         T* noise,
                                         const float temperature,
                                         int64_t n) {
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  int step = blockDim.x * gridDim.x;
  for (int64_t i = index; i < n; i += step) {
    T gumbel_noise = -log(-log(noise[i]));
    output_data[i] = (gumbel_noise + input_data[i]) / temperature;
  }
}

template <typename T>
struct GumbleNoiseGenerator<GPUContext, T> {
  static void Transform(const GPUContext& ctx,
                        const T* input_data,
                        T* output_data,
                        int size_to_axis,
                        int size_from_axis,
                        const float temperature) {
    DenseTensor random_tensor;
    int64_t size = size_to_axis * size_from_axis;
    random_tensor.Resize(make_ddim({size}));
    auto* random_data = ctx.template Alloc<T>(&random_tensor);
    thrust::counting_iterator<int64_t> index_sequence_begin(0);

    // generate gumbel noise
    int device_id = ctx.GetPlace().GetDeviceId();
    auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id);
    if (gen_cuda->GetIsInitPy()) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
      int64_t gen_offset = size * seed_offset.second;
      thrust::transform(
          index_sequence_begin,
          index_sequence_begin + size,
          thrust::device_ptr<T>(random_data),
          UniformCUDAGenerator<T>(0.00001, 1, seed_offset.first, gen_offset));
    } else {
      const unsigned int seed = std::random_device()();
      thrust::transform(index_sequence_begin,
                        index_sequence_begin + size,
                        thrust::device_ptr<T>(random_data),
                        UniformCUDAGenerator<T>(0.00001, 1, seed));
    }

    // add gumbel noise to X
    const int thread_size = 512;
    int64_t block_size = (size + thread_size) / thread_size;
    AddGumbelNoiseCUDAKernel<T><<<block_size, thread_size, 0, ctx.stream()>>>(
        input_data, output_data, random_data, temperature, size);
  }
};

}  // namespace phi
#endif

PD_REGISTER_KERNEL(
    gumbel_softmax, GPU, ALL_LAYOUT, phi::GumbelSoftmaxKernel, float, double) {}