// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gumbel_softmax_kernel.h" #include "paddle/phi/kernels/impl/gumbel_softmax_kernel_impl.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #if defined(__NVCC__) || defined(__HIPCC__) #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include #include #include #include #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template using KeyValuePair = cub::KeyValuePair; template struct UniformCUDAGenerator { T min_, max_; unsigned int seed_; unsigned int offset_ = 0; HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed) : min_(min), max_(max), seed_(seed) {} HOSTDEVICE UniformCUDAGenerator(T min, T max, unsigned int seed, unsigned int offset) : min_(min), max_(max), seed_(seed), offset_(offset) {} HOSTDEVICE T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed_); thrust::uniform_real_distribution dist(min_, max_); rng.discard(n + offset_); return dist(rng); } }; template __global__ void OneHotCUDAKernel(const int64_t height, const int64_t width, const int64_t size_out_axis, const T init, const T* in, T* out) { typedef cub::BlockReduce, BlockDim> BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int64_t idx = blockIdx.x; idx < height; idx += gridDim.x) { KeyValuePair kv_pair = {-1, init}; int h = idx / size_out_axis; int w = idx % size_out_axis; cub::ArgMax reducer; for (int k = threadIdx.x; k < width; k += blockDim.x) { kv_pair = reducer( {k, in[h * width * size_out_axis + k * size_out_axis + w]}, kv_pair); } kv_pair = BlockReduce(temp_storage).Reduce(kv_pair, reducer); if (threadIdx.x == 0) { int index = static_cast(kv_pair.key); out[h * width * size_out_axis + index * size_out_axis + w] = 1; } __syncthreads(); } } template struct OneHotGenerator { static void Transform(const GPUContext& ctx, const DenseTensor& X, DenseTensor* out, int axis) { const int size_to_axis = funcs::SizeToAxis(axis, X.dims()); const int size_from_axis = funcs::SizeFromAxis(axis, X.dims()); const int size_out_axis = funcs::SizeOutAxis(axis, X.dims()); constexpr int thread_size = 512; int64_t max_grid_dimx = ctx.GetCUDAMaxGridDimSize()[0]; int64_t height = size_to_axis * size_out_axis; int block_size = height < max_grid_dimx ? height : max_grid_dimx; DenseTensor input_tensor; input_tensor.Resize(out->dims()); ctx.template Alloc(&input_tensor); paddle::framework::TensorCopy(*out, ctx.GetPlace(), &input_tensor); funcs::set_constant(ctx, out, 0.0); OneHotCUDAKernel<<>>( height, size_from_axis / size_out_axis, size_out_axis, std::numeric_limits::lowest(), input_tensor.data(), out->data()); } }; template __global__ void AddGumbelNoiseCUDAKernel(const T* input_data, T* output_data, T* noise, const float temperature, int64_t n) { int index = threadIdx.x + blockIdx.x * blockDim.x; int step = blockDim.x * gridDim.x; for (int64_t i = index; i < n; i += step) { T gumbel_noise = -log(-log(noise[i])); output_data[i] = (gumbel_noise + input_data[i]) / temperature; } } template struct GumbleNoiseGenerator { static void Transform(const GPUContext& ctx, const T* input_data, T* output_data, int size_to_axis, int size_from_axis, const float temperature) { DenseTensor random_tensor; int64_t size = size_to_axis * size_from_axis; random_tensor.Resize(make_ddim({size})); auto* random_data = ctx.template Alloc(&random_tensor); thrust::counting_iterator index_sequence_begin(0); // generate gumbel noise int device_id = ctx.GetPlace().GetDeviceId(); auto gen_cuda = paddle::framework::GetDefaultCUDAGenerator(device_id); if (gen_cuda->GetIsInitPy()) { auto seed_offset = gen_cuda->IncrementOffset(1); int64_t gen_offset = size * seed_offset.second; thrust::transform( index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(random_data), UniformCUDAGenerator(0.00001, 1, seed_offset.first, gen_offset)); } else { const unsigned int seed = std::random_device()(); thrust::transform(index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(random_data), UniformCUDAGenerator(0.00001, 1, seed)); } // add gumbel noise to X const int thread_size = 512; int64_t block_size = (size + thread_size) / thread_size; AddGumbelNoiseCUDAKernel<<>>( input_data, output_data, random_data, temperature, size); } }; } // namespace phi #endif PD_REGISTER_KERNEL( gumbel_softmax, GPU, ALL_LAYOUT, phi::GumbelSoftmaxKernel, float, double) {}