jit_kernel_test.cc 24.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>    // for exp
T
tensor-tang 已提交
17
#include <cstring>  // for memcpy
T
tensor-tang 已提交
18
#include <random>
T
tensor-tang 已提交
19 20 21 22 23
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
24
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
P
peizhilin 已提交
25
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
26

T
tensor-tang 已提交
27 28 29 30 31 32 33 34
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
35 36
constexpr int repeat = 20000;

T
tensor-tang 已提交
37 38 39
// TODO(TJ): benchmark and test should be seperated,
// benchmark should verify more sizes

T
tensor-tang 已提交
40 41 42 43 44 45 46
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
47 48
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
49 50 51 52 53 54 55 56
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66
#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
  __m256 tmp = _mm256_loadu_ps(x);
  tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
  _mm256_storeu_ps(y, tmp);
}
#endif

TEST(JitKernel, vrelu) {
  namespace jit = paddle::operators::math::jitkernel;
67
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
68
  for (int d : {3, 7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
69 70 71 72 73 74 75 76 77 78
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -10.f, 1.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
79
      refer::VRelu<float>(x_data, zref_data, d);
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88
    }
    auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vrelu_intri8(d, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
89
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat << " us";
T
tensor-tang 已提交
90 91 92 93
    }
#endif
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
94
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
95 96
    }
    auto ttgte = GetCurrentUS();
97
    VLOG(3) << "Vec size " << d
98
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
99
             << " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
100 101 102 103 104 105
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
106 107
TEST(JitKernel, vaddbias) {
  namespace jit = paddle::operators::math::jitkernel;
108
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117 118 119 120
  for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float a = 2.f;
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
121
      refer::VAddBias<float>(&a, x_data, zref_data, d);
T
tensor-tang 已提交
122 123 124 125
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
126
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
127 128 129
    }
    auto ttgte = GetCurrentUS();

130
    VLOG(3) << "Vec size " << d
131
             << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
132
             << " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
133 134 135 136 137 138
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
139 140 141 142 143 144 145 146
#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
147
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
148
  for (int d : {1, 3, 4, 6, 7, 8, 12, 15, 16, 20, 30, 128, 256}) {
T
tensor-tang 已提交
149 150 151 152 153 154 155 156 157 158
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
159
      refer::VExp<float>(x_data, zref_data, d);
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
173
      // ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
174
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
175 176 177
    }
    auto ttgte = GetCurrentUS();

M
minqiyang 已提交
178
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
179
#ifdef PADDLE_WITH_MKLML
M
minqiyang 已提交
180
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
181
#else
M
minqiyang 已提交
182
            << " us, "
T
tensor-tang 已提交
183
#endif
184 185

            << "tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
186 187
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }
  }
}

void vsigmoid_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
    const int n, const float* x, float* y) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 0.f - y[i];
  }
T
tensor-tang 已提交
202
  vexp->Compute(y, y, n);
203 204 205 206 207 208 209
  for (int i = 0; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
}

TEST(JitKernel, vsigmoid) {
  namespace jit = paddle::operators::math::jitkernel;
210
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
211
  for (int d : {1, 3, 4, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vexp =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_better(vexp, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
229
      refer::VSigmoid<float>(x_data, zref_data, d);
230 231 232 233
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
234
      ker->Compute(x_data, ztgt_data, d);
235 236 237
    }
    auto ttgte = GetCurrentUS();

238 239

    VLOG(3) << "Vec size " << d
240 241
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
T
tensor-tang 已提交
242
             << " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vtanh_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
        vaddbias,
    const int n, const float* x, float* y) {
T
tensor-tang 已提交
259 260
  const float a = 2.f, b = -1.f;
  vscal->Compute(&a, x, y, n);
T
tensor-tang 已提交
261
  vsigmoid->Compute(y, y, n);
T
tensor-tang 已提交
262 263
  vscal->Compute(&a, y, y, n);
  vaddbias->Compute(&b, y, y, n);
T
tensor-tang 已提交
264 265 266 267
}

TEST(JitKernel, vtanh) {
  namespace jit = paddle::operators::math::jitkernel;
268
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
269
  for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
T
tensor-tang 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vscal =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const auto& vsigmoid =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vaddbias =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
291
      refer::VTanh<float>(x_data, zref_data, d);
T
tensor-tang 已提交
292 293 294 295
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
296
      ker->Compute(x_data, ztgt_data, d);
T
tensor-tang 已提交
297 298 299
    }
    auto ttgte = GetCurrentUS();

300 301

    VLOG(3) << "Vec size " << d
302 303
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
T
tensor-tang 已提交
304
             << " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
305 306
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
T
tensor-tang 已提交
307 308 309 310
    }
  }
}

T
tensor-tang 已提交
311 312 313 314 315 316 317 318 319 320 321 322
void lstm_ctht_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid_3d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VTanhKernel<float>>& vtanh_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VMulKernel<float>>& vmul_d,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd_d,
    const int d, float* gates, const float* ct_1, float* ct, float* ht) {
  int d2 = d * 2;
T
tensor-tang 已提交
323 324
  vsigmoid_3d->Compute(gates + d, gates + d, 3 * d);
  vtanh_d->Compute(gates, gates, d);
T
tensor-tang 已提交
325 326
  vmul_d->Compute(gates, gates + d, gates + d, d);
  vmul_d->Compute(ct_1, gates + d2, gates + d2, d);
T
tensor-tang 已提交
327
  vadd_d->Compute(gates + d, gates + d2, ct, d);
T
tensor-tang 已提交
328
  /* H_t = act_cell(C_t) * ogated */
T
tensor-tang 已提交
329
  vtanh_d->Compute(ct, gates + d2, d);
T
tensor-tang 已提交
330
  vmul_d->Compute(gates + d2, gates + d * 3, ht, d);
T
tensor-tang 已提交
331 332 333 334
}

TEST(JitKernel, lstm) {
  namespace jit = paddle::operators::math::jitkernel;
335
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
336
  for (int d : {1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 30, 32, 64, 100}) {
T
tensor-tang 已提交
337 338 339 340 341 342 343 344 345
    int d4 = d * 4;
    int d3 = d * 3;
    std::vector<float> x(d4), xref(d4);
    std::vector<float> ct_1(d), ct_tgt(d), ht_tgt(d);
    std::vector<float> ct_ref(d), ht_ref(d);
    RandomVec<float>(d4, x.data(), -2.f, 2.f);
    RandomVec<float>(d, ct_1.data(), -2.f, 2.f);
    memcpy(xref.data(), x.data(), sizeof(float) * d4);
    std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
346
    const jit::lstm_attr_t attr(d, act_gate, act_cand, act_cell, false);
T
tensor-tang 已提交
347 348
    const auto& ker =
        jit::KernelPool::Instance()
349 350
            .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
                attr);
T
tensor-tang 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    // below kernels are used to compute refer
    const auto& vsigmoid_3d =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(
            d3);
    const auto& vtanh_d =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vmul_d =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const auto& vadd_d =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);

    float* x_data = x.data();
    float* xref_data = xref.data();
    const float* ct_1_data = ct_1.data();
    float* ct_tgt_data = ct_tgt.data();
    float* ht_tgt_data = ht_tgt.data();
    float* ct_ref_data = ct_ref.data();
    float* ht_ref_data = ht_ref.data();
    // compute once to check correctness
370 371 372 373 374 375 376
    jit::lstm_t step;
    step.gates = xref_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_ref_data;
    step.ht = ht_ref_data;
    refer::LSTMCtHt<float>(&step, &attr);

377 378 379 380
    step.gates = x_data;
    step.ct = ct_tgt_data;
    step.ht = ht_tgt_data;
    ker->ComputeCtHt(&step, &attr);
T
tensor-tang 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ct_tgt_data[i], ct_ref_data[i], 1e-3);
      EXPECT_NEAR(ht_tgt_data[i], ht_ref_data[i], 1e-3);
    }

    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      lstm_ctht_better(vsigmoid_3d, vtanh_d, vmul_d, vadd_d, d, xref_data,
                       ct_1_data, ct_ref_data, ht_ref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
394
      refer::LSTMCtHt<float>(&step, &attr);
T
tensor-tang 已提交
395 396 397 398
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
399
      ker->ComputeCtHt(&step, &attr);
T
tensor-tang 已提交
400 401
    }
    auto ttgte = GetCurrentUS();
402
    VLOG(3) << "Vec size " << d
403 404
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better(jit) takes: " << (tmkle - tmkls) / repeat
T
tensor-tang 已提交
405
             << " us, tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
406 407 408
  }
}

T
tensor-tang 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
434
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
449
      refer::VScal<float>(&a, x_data, zref_data, d);
T
tensor-tang 已提交
450 451 452 453
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
454
      refer::VScal<float>(&a, y_data, y_data, d);
T
tensor-tang 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
M
minqiyang 已提交
478
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
T
tensor-tang 已提交
479
               << " us, inplace: " << (si3 - si2) / repeat << " us";
T
tensor-tang 已提交
480 481 482 483 484
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
485
      ker->Compute(&a, x_data, ztgt_data, d);
T
tensor-tang 已提交
486 487 488 489
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
490
      ker->Compute(&a, y_data, y_data, d);
T
tensor-tang 已提交
491 492
    }
    auto ttgte1 = GetCurrentUS();
M
minqiyang 已提交
493 494
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, inplace takes: " << (trefe1 - trefs1) / repeat
T
tensor-tang 已提交
495
#ifdef PADDLE_WITH_MKLML
M
minqiyang 已提交
496
            << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
497
#else
M
minqiyang 已提交
498
            << " us, "
T
tensor-tang 已提交
499
#endif
500
             << "tgt takes: " << (ttgte - ttgts) / repeat
T
tensor-tang 已提交
501 502
             << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat
             << " us";
T
tensor-tang 已提交
503 504 505 506 507
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
508

T
tensor-tang 已提交
509
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
510
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
511 512 513 514 515 516 517
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
518

T
tensor-tang 已提交
519 520 521
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
522
}
T
tensor-tang 已提交
523
#endif
T
tensor-tang 已提交
524

T
tensor-tang 已提交
525 526
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
527
  namespace refer = paddle::operators::math::jitkernel::refer;
528
  for (int d : {7, 8, 15, 16, 20, 30, 256, 512, 1000, 1024}) {
T
tensor-tang 已提交
529 530 531 532 533 534 535 536 537 538
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
539
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
540
    for (int i = 0; i < repeat; ++i) {
541
      refer::VMul<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
542
    }
T
tensor-tang 已提交
543
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
544

T
tensor-tang 已提交
545 546
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
547
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
548
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
549
    }
T
tensor-tang 已提交
550 551
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
552

T
tensor-tang 已提交
553 554 555 556
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
557
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
558 559
      }
      auto si1 = GetCurrentUS();
M
minqiyang 已提交
560
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
561 562 563 564 565
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
566
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
567 568 569
    }
    auto ttgte = GetCurrentUS();

M
minqiyang 已提交
570
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
571
#ifdef PADDLE_WITH_MKLML
M
minqiyang 已提交
572
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
573
#else
M
minqiyang 已提交
574
            << " us, "
T
tensor-tang 已提交
575
#endif
T
tensor-tang 已提交
576
             << "tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
601
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
615
      refer::VAdd<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
M
minqiyang 已提交
634
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
T
tensor-tang 已提交
635 636 637
    }
#endif

T
tensor-tang 已提交
638 639
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
640
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
641 642 643
    }
    auto ttgte = GetCurrentUS();

M
minqiyang 已提交
644
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
645
#ifdef PADDLE_WITH_MKLML
M
minqiyang 已提交
646
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
647
#else
M
minqiyang 已提交
648
            << " us, "
T
tensor-tang 已提交
649
#endif
T
tensor-tang 已提交
650
             << "tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
651 652 653 654 655 656
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
657 658 659 660 661
void vaddrelu_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddKernel<float>>& vadd,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VReluKernel<float>>& vrelu,
T
tensor-tang 已提交
662 663
    const float* x, const float* y, float* z, int d) {
  vadd->Compute(x, y, z, d);
T
tensor-tang 已提交
664
  vrelu->Compute(z, z, d);
T
tensor-tang 已提交
665 666 667 668
}

TEST(JitKernel, vaddrelu) {
  namespace jit = paddle::operators::math::jitkernel;
669
  namespace refer = paddle::operators::math::jitkernel::refer;
T
tensor-tang 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddReluKernel<float>>(d);
    const auto& vadd =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const auto& vrelu =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
687
      refer::VAddRelu<float>(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
688 689 690 691
    }
    auto trefe = GetCurrentUS();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
692
      vaddrelu_better(vadd, vrelu, x_data, y_data, zref_data, d);
T
tensor-tang 已提交
693 694 695 696
    }
    auto tmkle = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
697
      ker->Compute(x_data, y_data, ztgt_data, d);
T
tensor-tang 已提交
698 699
    }
    auto ttgte = GetCurrentUS();
700
    VLOG(3) << "Vec size " << d
701 702
             << ": refer takes: " << (trefe - trefs) / repeat
             << " us, better takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
703
             << "tgt takes: " << (ttgte - ttgts) / repeat << " us";
T
tensor-tang 已提交
704 705 706 707 708 709
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
710 711 712 713
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
714 715
  jit::lstm_attr_t attr(frame_size, act_gate, act_cand, act_cell, false);

716 717
  // empty call it to avoid unknown flag 'use_pinned_memory' on Mac
  paddle::platform::jit::MayIUse(paddle::platform::jit::avx);
T
tensor-tang 已提交
718
  const auto& plstm1 =
T
tensor-tang 已提交
719
      jit::KernelPool::Instance()
720 721
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);

T
tensor-tang 已提交
722
  const auto& plstm2 =
T
tensor-tang 已提交
723
      jit::KernelPool::Instance()
724 725 726
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(attr);
  EXPECT_EQ(plstm1, plstm2);

T
tensor-tang 已提交
727 728
  const auto& peephole =
      jit::KernelPool::Instance()
729 730
          .template Get<jit::LSTMKernel<float>, const jit::lstm_attr_t&>(
              jit::lstm_attr_t(frame_size, act_gate, act_cand, act_cell, true));
T
tensor-tang 已提交
731
  EXPECT_TRUE(plstm1 != peephole);
T
tensor-tang 已提交
732

T
tensor-tang 已提交
733
  const auto& pvmul_f =
T
tensor-tang 已提交
734
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
735 736
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
737

T
tensor-tang 已提交
738
  const auto& pvmul_d =
T
tensor-tang 已提交
739
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
740 741
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
742

T
tensor-tang 已提交
743
  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulfjit4");
T
tensor-tang 已提交
744 745 746 747 748
#if defined(__APPLE__) || defined(__OSX__) || defined(_WIN32)
  EXPECT_EQ(pvmul_from_key, nullptr);
#else
  EXPECT_EQ(pvmul_from_key, pvmul_f);
#endif
T
tensor-tang 已提交
749
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulfjit");
T
tensor-tang 已提交
750
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
751
}