layer_helper.py 7.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import copy
import itertools

4 5
from paddle.v2.framework.framework import Variable, g_main_program, \
    g_startup_program, unique_name, Program
6
from paddle.v2.framework.initializer import ConstantInitializer, \
Q
QI JUN 已提交
7
    UniformInitializer, XavierInitializer
Y
Yu Yang 已提交
8

Y
Yu Yang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22

class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
23 24
    def main_program(self):
        prog = self.kwargs.get('main_program', None)
Y
Yu Yang 已提交
25
        if prog is None:
26
            return g_main_program
Y
Yu Yang 已提交
27 28 29
        else:
            return prog

Q
QI JUN 已提交
30
    @property
31 32
    def startup_program(self):
        prog = self.kwargs.get('startup_program', None)
Q
QI JUN 已提交
33
        if prog is None:
34
            return g_startup_program
Q
QI JUN 已提交
35 36 37
        else:
            return prog

Y
Yu Yang 已提交
38
    def append_op(self, *args, **kwargs):
39
        return self.main_program.current_block().append_op(*args, **kwargs)
Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
Q
QI JUN 已提交
64
        default = {'name': None, 'initializer': XavierInitializer()}
Y
Yu Yang 已提交
65
        actual = self.kwargs.get('param_attr', None)
Y
Yu Yang 已提交
66 67 68 69 70 71
        if actual is None:
            actual = default
        for default_field in default.keys():
            if default_field not in actual:
                actual[default_field] = default[default_field]
        return actual
Y
Yu Yang 已提交
72

Q
QI JUN 已提交
73
    @property
Q
QI JUN 已提交
74
    def bias_attr(self):
Q
QI JUN 已提交
75
        default = {'name': None, 'initializer': XavierInitializer()}
76
        bias_attr = self.kwargs.get('bias_attr', None)
Q
QI JUN 已提交
77
        if bias_attr is None:
Y
Yu Yang 已提交
78 79 80 81 82 83
            bias_attr = default

        if isinstance(bias_attr, dict):
            for default_field in default.keys():
                if default_field not in bias_attr:
                    bias_attr[default_field] = default[default_field]
Y
Yu Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        return bias_attr

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
        if isinstance(param_attr, dict):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.data_type
            elif dtype != each.data_type:
                raise ValueError("Data Type mismatch")
        return dtype

116 117
    def create_parameter(self, attr, shape, dtype, suffix='w',
                         initializer=None):
118 119
        # Deepcopy the attr so that parameters can be shared in program
        attr_copy = copy.deepcopy(attr)
120 121
        if initializer is not None:
            attr_copy['initializer'] = initializer
122 123
        if attr_copy['name'] is None:
            attr_copy['name'] = unique_name(".".join([self.name, suffix]))
124
        self.startup_program.global_block().create_parameter(
125
            dtype=dtype, shape=shape, **attr_copy)
126
        return self.main_program.global_block().create_parameter(
127
            name=attr_copy['name'], dtype=dtype, shape=shape)
Y
Yu Yang 已提交
128 129

    def create_tmp_variable(self, dtype):
130
        return self.main_program.current_block().create_var(
Q
QI JUN 已提交
131 132 133
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
134

Y
Yu Yang 已提交
135
    def create_variable(self, *args, **kwargs):
136
        return self.main_program.current_block().create_var(*args, **kwargs)
Y
Yu Yang 已提交
137

Q
Qiao Longfei 已提交
138
    def create_global_variable(self, persistable=False, *args, **kwargs):
139
        return self.main_program.global_block().create_var(
Q
Qiao Longfei 已提交
140 141 142 143
            *args, persistable=persistable, **kwargs)

    def set_variable_initializer(self, var, initializer):
        assert isinstance(var, Variable)
144
        self.startup_program.global_block().create_var(
Q
Qiao Longfei 已提交
145 146 147 148 149 150
            name=var.name,
            type=var.type,
            dtype=var.data_type,
            shape=var.shape,
            persistable=True,
            initializer=initializer)
Y
Yu Yang 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def append_bias_op(self, input_var, num_flatten_dims=None):
        """
        Append bias operator and return its output. If the user does not set 
        bias_attr, append_bias_op will return input_var
         
        :param input_var: the input variable. The len(input_var.shape) is larger
        or equal than 2.
        :param num_flatten_dims: The input tensor will be flatten as a matrix 
        when adding bias.
        `matrix.shape = product(input_var.shape[0:num_flatten_dims]), product(
                input_var.shape[num_flatten_dims:])`
        """
        if num_flatten_dims is None:
            num_flatten_dims = self.kwargs.get('num_flatten_dims', None)
            if num_flatten_dims is None:
                num_flatten_dims = 1

        size = list(input_var.shape[num_flatten_dims:])
Q
QI JUN 已提交
170
        bias_attr = self.bias_attr
Y
Yu Yang 已提交
171 172
        if not bias_attr:
            return input_var
173

Y
Yu Yang 已提交
174
        b = self.create_parameter(
175
            attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
Y
Yu Yang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
            outputs={'Out': [tmp]})
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp