layer_helper.py 6.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3
import copy
import itertools

Y
Yu Yang 已提交
4
from paddle.v2.framework.framework import Variable, g_program, \
Q
Qiao Longfei 已提交
5
    g_init_program, unique_name, Program
6 7
from paddle.v2.framework.initializer import ConstantInitializer, \
    UniformInitializer
Y
Yu Yang 已提交
8

Y
Yu Yang 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

class LayerHelper(object):
    def __init__(self, layer_type, **kwargs):
        self.kwargs = kwargs
        self.layer_type = layer_type
        name = self.kwargs.get('name', None)
        if name is None:
            self.kwargs['name'] = unique_name(self.layer_type)

    @property
    def name(self):
        return self.kwargs['name']

    @property
    def program(self):
        prog = self.kwargs.get('program', None)
        if prog is None:
            return g_program
        else:
            return prog

Q
QI JUN 已提交
30 31 32 33 34 35 36 37
    @property
    def init_program(self):
        prog = self.kwargs.get('init_program', None)
        if prog is None:
            return g_init_program
        else:
            return prog

Y
Yu Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def append_op(self, *args, **kwargs):
        return self.program.current_block().append_op(*args, **kwargs)

    def multiple_input(self, input_param_name='input'):
        inputs = self.kwargs.get(input_param_name, [])
        type_error = TypeError(
            "Input of {0} layer should be Variable or sequence of Variable".
            format(self.layer_type))
        if isinstance(inputs, Variable):
            inputs = [inputs]
        elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
            raise type_error
        else:
            for each in inputs:
                if not isinstance(each, Variable):
                    raise type_error
        return inputs

    def input(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        if len(inputs) != 1:
            raise "{0} layer only takes one input".format(self.layer_type)
        return inputs[0]

    @property
    def param_attr(self):
64
        default = {'name': None, 'initializer': UniformInitializer()}
Y
Yu Yang 已提交
65
        actual = self.kwargs.get('param_attr', None)
Y
Yu Yang 已提交
66 67 68 69 70 71
        if actual is None:
            actual = default
        for default_field in default.keys():
            if default_field not in actual:
                actual[default_field] = default[default_field]
        return actual
Y
Yu Yang 已提交
72

Q
QI JUN 已提交
73
    def bias_attr(self):
74
        default = {'name': None, 'initializer': ConstantInitializer()}
75 76
        bias_attr = self.kwargs.get('bias_attr', None)
        if bias_attr is True:
Y
Yu Yang 已提交
77 78 79 80 81 82
            bias_attr = default

        if isinstance(bias_attr, dict):
            for default_field in default.keys():
                if default_field not in bias_attr:
                    bias_attr[default_field] = default[default_field]
Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        return bias_attr

    def multiple_param_attr(self, length):
        param_attr = self.param_attr
        if isinstance(param_attr, dict):
            param_attr = [param_attr]

        if len(param_attr) != 1 and len(param_attr) != length:
            raise ValueError("parameter number mismatch")
        elif len(param_attr) == 1 and length != 1:
            tmp = [None] * length
            for i in xrange(length):
                tmp[i] = copy.deepcopy(param_attr[0])
            param_attr = tmp
        return param_attr

    def iter_inputs_and_params(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        param_attrs = self.multiple_param_attr(len(inputs))
        for ipt, param_attr in itertools.izip(inputs, param_attrs):
            yield ipt, param_attr

    def input_dtype(self, input_param_name='input'):
        inputs = self.multiple_input(input_param_name)
        dtype = None
        for each in inputs:
            if dtype is None:
                dtype = each.data_type
            elif dtype != each.data_type:
                raise ValueError("Data Type mismatch")
        return dtype

    def create_parameter(self, attr, shape, dtype, suffix='w'):
116 117 118 119
        # Deepcopy the attr so that parameters can be shared in program
        attr_copy = copy.deepcopy(attr)
        if attr_copy['name'] is None:
            attr_copy['name'] = unique_name(".".join([self.name, suffix]))
Q
QI JUN 已提交
120
        self.init_program.global_block().create_parameter(
121
            dtype=dtype, shape=shape, **attr_copy)
Q
QI JUN 已提交
122
        return self.program.global_block().create_parameter(
123
            name=attr_copy['name'], dtype=dtype, shape=shape)
Y
Yu Yang 已提交
124 125 126

    def create_tmp_variable(self, dtype):
        return self.program.current_block().create_var(
Q
QI JUN 已提交
127 128 129
            name=unique_name(".".join([self.name, 'tmp'])),
            dtype=dtype,
            persistable=False)
Y
Yu Yang 已提交
130

Y
Yu Yang 已提交
131 132 133
    def create_variable(self, *args, **kwargs):
        return self.program.current_block().create_var(*args, **kwargs)

Q
Qiao Longfei 已提交
134
    def create_global_variable(self, persistable=False, *args, **kwargs):
Q
QI JUN 已提交
135
        return self.program.global_block().create_var(
Q
Qiao Longfei 已提交
136 137 138 139 140 141 142 143 144 145 146
            *args, persistable=persistable, **kwargs)

    def set_variable_initializer(self, var, initializer):
        assert isinstance(var, Variable)
        self.init_program.global_block().create_var(
            name=var.name,
            type=var.type,
            dtype=var.data_type,
            shape=var.shape,
            persistable=True,
            initializer=initializer)
Y
Yu Yang 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def append_bias_op(self, input_var, num_flatten_dims=None):
        """
        Append bias operator and return its output. If the user does not set 
        bias_attr, append_bias_op will return input_var
         
        :param input_var: the input variable. The len(input_var.shape) is larger
        or equal than 2.
        :param num_flatten_dims: The input tensor will be flatten as a matrix 
        when adding bias.
        `matrix.shape = product(input_var.shape[0:num_flatten_dims]), product(
                input_var.shape[num_flatten_dims:])`
        """
        if num_flatten_dims is None:
            num_flatten_dims = self.kwargs.get('num_flatten_dims', None)
            if num_flatten_dims is None:
                num_flatten_dims = 1

        size = list(input_var.shape[num_flatten_dims:])
Q
QI JUN 已提交
166
        bias_attr = self.bias_attr()
Y
Yu Yang 已提交
167 168
        if not bias_attr:
            return input_var
169

Y
Yu Yang 已提交
170
        b = self.create_parameter(
171
            attr=bias_attr, shape=size, dtype=input_var.data_type, suffix='b')
Y
Yu Yang 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        self.append_op(
            type='elementwise_add',
            inputs={'X': [input_var],
                    'Y': [b]},
            outputs={'Out': [tmp]})
        return tmp

    def append_activation(self, input_var):
        act = self.kwargs.get('act', None)
        if act is None:
            return input_var
        if isinstance(act, basestring):
            act = {'type': act}
        tmp = self.create_tmp_variable(dtype=input_var.data_type)
        act_type = act.pop('type')
        self.append_op(
            type=act_type,
            inputs={"X": [input_var]},
            outputs={"Y": [tmp]},
            attrs=act)
        return tmp