parameter_send.cc 12.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/distributed/parameter_send.h"
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18
#include <set>
#include <string>
19
#include <utility>
Q
Qiao Longfei 已提交
20 21 22 23 24 25 26 27 28 29 30
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
C
chengmo 已提交
31
#include "paddle/fluid/platform/profiler.h"
32
#include "paddle/fluid/string/printf.h"
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

43 44
typedef std::vector<std::pair<std::string, std::string>> EP_SPLIT_TABLE_PAIRS;

45 46 47
inline EP_SPLIT_TABLE_PAIRS GetMultiFieldCommContext(
    const CommContext &rpc_ctx, const framework::Scope &scope,
    int multi_parts) {
48 49 50 51
  EP_SPLIT_TABLE_PAIRS table_pairs;

  auto *send_var = scope.FindVar(rpc_ctx.var_name);
  if (send_var->IsType<framework::SelectedRows>()) {
52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_GE(multi_parts, 1,
                      platform::errors::InvalidArgument(
                          "multi_parts must == 1 in parameter send, now is: %d",
                          multi_parts));

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      table_pairs.push_back(
          std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_varnames[i]));
60 61 62
    }

  } else {
63 64
    PADDLE_THROW(platform::errors::InvalidArgument(
        "GetMultiFieldCommContext unsupported LoDTensor current!"));
65 66 67 68 69
  }

  return table_pairs;
}  // namespace distributed

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void SendByNotifyRPC(const CommContext &rpc_ctx,
                     const framework::Scope &scope) {
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto &send_var_name = rpc_ctx.var_name;
  std::vector<distributed::VarHandlePtr> rets;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  if (NeedSend(scope, send_var_name)) {
    for (size_t j = 0; j < rpc_ctx.epmap.size(); j++) {
      auto &endpoint = rpc_ctx.epmap[j];
      VLOG(4) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncDistributeNotify(endpoint, cpu_ctx, scope,
                                                       send_var_name));
      VLOG(4) << "send var " << send_var_name << " by notify RPC done";
    }
  } else {
    VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.var_name;
  }

  for (auto &handle : rets) {
    PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                              "internal error in RPCClient"));
  }
}

97
template <typename T>
98
void ParameterSend<T>::operator()(const CommContext &rpc_ctx,
99 100
                                  const framework::Scope &scope, bool sync,
                                  int multi_parts) {
C
chengmo 已提交
101 102
  platform::RecordEvent record_event("ParameterSend::operator",
                                     platform::EventRole::kInnerOp);
103 104 105 106 107
  if (rpc_ctx.var_name == STEP_COUNTER) {
    SendByNotifyRPC(rpc_ctx, scope);
    return;
  }

108
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
109 110 111 112 113

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
114
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
115

116
  std::vector<distributed::VarHandlePtr> rets;
117
  auto *send_var = scope.FindVar(rpc_ctx.var_name);
118

Q
Qiao Longfei 已提交
119
  if (send_var->IsType<framework::LoDTensor>()) {
C
chengmo 已提交
120 121
    platform::RecordEvent record_event("ParameterSend::LoDTensor",
                                       platform::EventRole::kInnerOp);
122
    size_t out_num = rpc_ctx.splited_varnames.size();
Q
Qiao Longfei 已提交
123 124 125 126 127
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
128

Q
Qiao Longfei 已提交
129
      // infer output shape
130
      PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num,
Q
Qiao Longfei 已提交
131 132 133 134
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
135
        dim[0] = rpc_ctx.height_sections[i];
Q
Qiao Longfei 已提交
136 137 138
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
139 140
      // create output var in local scope
      size_t row_offset = 0;
141
      for (size_t i = 0; i < out_num; ++i) {
142
        framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[i])
Q
Qiao Longfei 已提交
143
                                     ->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
144 145 146
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
T
tangwei12 已提交
147 148
    } else {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
149
      framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[0])
T
tangwei12 已提交
150 151
                                   ->GetMutable<framework::LoDTensor>();
      out->ShareDataWith(send_tensor);
Q
Qiao Longfei 已提交
152
    }
153 154 155 156 157 158 159 160 161 162 163 164 165 166

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      auto &send_var_name = rpc_ctx.splited_varnames[i];
      auto &endpoint = rpc_ctx.epmap[i];
      VLOG(4) << " send var name: " << send_var_name
              << "endpoint: " << endpoint;
      if (NeedSend(*local_scope.get(), send_var_name)) {
        VLOG(3) << "sending " << send_var_name << " to " << endpoint;
        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(3) << "don't send non-initialized variable: "
                << rpc_ctx.splited_varnames[i];
167 168
      }
    }
169
  } else if (send_var->IsType<framework::SelectedRows>()) {
C
chengmo 已提交
170 171
    platform::RecordEvent record_event("ParameterSend::SelectedRows",
                                       platform::EventRole::kInnerOp);
Q
Qiao Longfei 已提交
172
    auto &send_slr = send_var->Get<framework::SelectedRows>();
173

Q
Qiao Longfei 已提交
174
    auto &send_rows = send_slr.rows();
175
    if (send_rows.size() == 0) {
176 177 178 179 180
      LOG(WARNING)
          << "WARNING: The variable sent to pserver is empty, which "
             "may cause an unknown error. Please check the state of "
             "use_double_buffer in pyreader/dataloader async mode, you need to "
             "turn it false.";
181 182
    }

183 184
    std::vector<std::vector<size_t>> outs_rows_idx;
    std::vector<std::vector<size_t>> outs_dense_idx;
185

186
    auto table_pairs = GetMultiFieldCommContext(rpc_ctx, scope, 1);
187 188
    outs_rows_idx.resize(table_pairs.size());
    outs_dense_idx.resize(table_pairs.size());
189 190

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
Q
Qiao Longfei 已提交
191
    auto *src = send_slr.value().data<T>();
192

Q
Qiao Longfei 已提交
193
    // create output var in local scope
Q
Qiao Longfei 已提交
194
    std::vector<framework::SelectedRows *> outs;
195 196 197
    for (auto &table : table_pairs) {
      auto *out =
          local_scope->Var(table.second)->GetMutable<framework::SelectedRows>();
198 199 200
      outs.push_back(out);
    }

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    if (!rpc_ctx.is_distributed) {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto ep_idx = send_rows[i] % pserver_num;
        auto id = send_rows[i] / pserver_num;
        outs_rows_idx[ep_idx].push_back(id);
        outs_dense_idx[ep_idx].push_back(i);
      }

      auto place = platform::CPUPlace();

      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
            outs[out_idx]->mutable_rows()->push_back(idx);
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
            }
          }
        }
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
      }
    } else {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto out_idx = send_rows[i] % pserver_num;
        outs_rows_idx[out_idx].push_back(send_rows[i]);
        outs_dense_idx[out_idx].push_back(i);
      }
255

256
      auto place = platform::CPUPlace();
257

258 259
      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
260 261 262 263 264
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();

265
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
266 267 268 269 270
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
271
            outs[out_idx]->mutable_rows()->push_back(idx);
272 273 274 275 276 277 278 279 280
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
281 282
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
283
            }
284 285
          }
        }
286 287 288 289
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
290 291 292
      }
    }

293 294 295 296
    for (size_t i = 0; i < table_pairs.size(); i++) {
      auto &send_var_name = table_pairs[i].second;
      auto &endpoint = table_pairs[i].first;
      auto need_send = NeedSend(*local_scope.get(), send_var_name);
Q
Qiao Longfei 已提交
297

298
      VLOG(4) << "send var name: " << send_var_name
299 300
              << " send var endpoint: " << endpoint
              << " need send: " << need_send;
301 302 303 304 305 306 307 308 309

      if (need_send) {
        VLOG(4) << "sending " << send_var_name << " to " << endpoint;

        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(4) << "don't send non-initialized variable: "
310
                << rpc_ctx.splited_varnames[i];
311
      }
Q
Qiao Longfei 已提交
312
    }
313 314
  } else {
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
315 316
  }

317
  VLOG(4) << "Prepare to send var " << rpc_ctx.var_name;
318 319
  if (sync) {
    for (auto &handle : rets) {
320
      VLOG(4) << "Wait send var to pserver handle: " << handle;
321 322
      PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                                "internal error in RPCClient"));
Q
Qiao Longfei 已提交
323 324 325 326
    }
  }
}

Q
Qiao Longfei 已提交
327 328
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
329 330 331
};  // namespace distributed
};  // namespace operators
};  // namespace paddle