parameter_send.cc 12.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/distributed/parameter_send.h"
Q
Qiao Longfei 已提交
16
#include <memory>
Q
Qiao Longfei 已提交
17 18
#include <set>
#include <string>
19
#include <utility>
Q
Qiao Longfei 已提交
20 21 22 23 24 25 26 27 28 29 30
#include <vector>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"

#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
31
#include "paddle/fluid/string/printf.h"
Q
Qiao Longfei 已提交
32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {
namespace distributed {

using LoDTensor = framework::LoDTensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

42 43
typedef std::vector<std::pair<std::string, std::string>> EP_SPLIT_TABLE_PAIRS;

44 45 46
inline EP_SPLIT_TABLE_PAIRS GetMultiFieldCommContext(
    const CommContext &rpc_ctx, const framework::Scope &scope,
    int multi_parts) {
47 48 49 50
  EP_SPLIT_TABLE_PAIRS table_pairs;

  auto *send_var = scope.FindVar(rpc_ctx.var_name);
  if (send_var->IsType<framework::SelectedRows>()) {
51 52 53 54 55 56 57 58
    PADDLE_ENFORCE_GE(multi_parts, 1,
                      platform::errors::InvalidArgument(
                          "multi_parts must == 1 in parameter send, now is: %d",
                          multi_parts));

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      table_pairs.push_back(
          std::make_pair(rpc_ctx.epmap[i], rpc_ctx.splited_varnames[i]));
59 60 61
    }

  } else {
62 63
    PADDLE_THROW(platform::errors::InvalidArgument(
        "GetMultiFieldCommContext unsupported LoDTensor current!"));
64 65 66 67 68
  }

  return table_pairs;
}  // namespace distributed

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
void SendByNotifyRPC(const CommContext &rpc_ctx,
                     const framework::Scope &scope) {
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto &send_var_name = rpc_ctx.var_name;
  std::vector<distributed::VarHandlePtr> rets;

  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);

  if (NeedSend(scope, send_var_name)) {
    for (size_t j = 0; j < rpc_ctx.epmap.size(); j++) {
      auto &endpoint = rpc_ctx.epmap[j];
      VLOG(4) << "sending " << send_var_name << " to " << endpoint;
      rets.push_back(rpc_client->AsyncDistributeNotify(endpoint, cpu_ctx, scope,
                                                       send_var_name));
      VLOG(4) << "send var " << send_var_name << " by notify RPC done";
    }
  } else {
    VLOG(3) << "don't send non-initialized variable: " << rpc_ctx.var_name;
  }

  for (auto &handle : rets) {
    PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                              "internal error in RPCClient"));
  }
}

96
template <typename T>
97
void ParameterSend<T>::operator()(const CommContext &rpc_ctx,
98 99
                                  const framework::Scope &scope, bool sync,
                                  int multi_parts) {
100 101 102 103 104
  if (rpc_ctx.var_name == STEP_COUNTER) {
    SendByNotifyRPC(rpc_ctx, scope);
    return;
  }

105
  std::unique_ptr<framework::Scope> local_scope = scope.NewTmpScope();
Q
Qiao Longfei 已提交
106 107 108 109 110

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx = *pool.Get(platform::CPUPlace());

  distributed::RPCClient *rpc_client =
Q
Qiao Longfei 已提交
111
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(rpc_ctx.trainer_id);
Q
Qiao Longfei 已提交
112

113
  std::vector<distributed::VarHandlePtr> rets;
114
  auto *send_var = scope.FindVar(rpc_ctx.var_name);
115

Q
Qiao Longfei 已提交
116
  if (send_var->IsType<framework::LoDTensor>()) {
117
    size_t out_num = rpc_ctx.splited_varnames.size();
Q
Qiao Longfei 已提交
118 119 120 121 122
    if (out_num > 1) {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
      auto &send_tensor_dims = send_tensor.dims();
      std::vector<framework::DDim> outs_dims;
      outs_dims.reserve(out_num);
Q
Qiao Longfei 已提交
123

Q
Qiao Longfei 已提交
124
      // infer output shape
125
      PADDLE_ENFORCE_EQ(rpc_ctx.height_sections.size(), out_num,
Q
Qiao Longfei 已提交
126 127 128 129
                        "tensor split sections size"
                        "should be equal to output size.");
      for (size_t i = 0; i < out_num; ++i) {
        auto dim = send_tensor_dims;
130
        dim[0] = rpc_ctx.height_sections[i];
Q
Qiao Longfei 已提交
131 132 133
        outs_dims.push_back(dim);
      }

Q
Qiao Longfei 已提交
134 135
      // create output var in local scope
      size_t row_offset = 0;
136
      for (size_t i = 0; i < out_num; ++i) {
137
        framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[i])
Q
Qiao Longfei 已提交
138
                                     ->GetMutable<framework::LoDTensor>();
Q
Qiao Longfei 已提交
139 140 141
        *out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
        row_offset += outs_dims[i][0];
      }
T
tangwei12 已提交
142 143
    } else {
      auto &send_tensor = send_var->Get<framework::LoDTensor>();
144
      framework::Tensor *out = local_scope->Var(rpc_ctx.splited_varnames[0])
T
tangwei12 已提交
145 146
                                   ->GetMutable<framework::LoDTensor>();
      out->ShareDataWith(send_tensor);
Q
Qiao Longfei 已提交
147
    }
148 149 150 151 152 153 154 155 156 157 158 159 160 161

    for (size_t i = 0; i < rpc_ctx.splited_varnames.size(); i++) {
      auto &send_var_name = rpc_ctx.splited_varnames[i];
      auto &endpoint = rpc_ctx.epmap[i];
      VLOG(4) << " send var name: " << send_var_name
              << "endpoint: " << endpoint;
      if (NeedSend(*local_scope.get(), send_var_name)) {
        VLOG(3) << "sending " << send_var_name << " to " << endpoint;
        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(3) << "don't send non-initialized variable: "
                << rpc_ctx.splited_varnames[i];
162 163
      }
    }
164
  } else if (send_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
165
    auto &send_slr = send_var->Get<framework::SelectedRows>();
166

Q
Qiao Longfei 已提交
167
    auto &send_rows = send_slr.rows();
168
    if (send_rows.size() == 0) {
169 170 171 172 173
      LOG(WARNING)
          << "WARNING: The variable sent to pserver is empty, which "
             "may cause an unknown error. Please check the state of "
             "use_double_buffer in pyreader/dataloader async mode, you need to "
             "turn it false.";
174 175
    }

176 177
    std::vector<std::vector<size_t>> outs_rows_idx;
    std::vector<std::vector<size_t>> outs_dense_idx;
178

179
    auto table_pairs = GetMultiFieldCommContext(rpc_ctx, scope, 1);
180 181
    outs_rows_idx.resize(table_pairs.size());
    outs_dense_idx.resize(table_pairs.size());
182 183

    auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
Q
Qiao Longfei 已提交
184
    auto *src = send_slr.value().data<T>();
185

Q
Qiao Longfei 已提交
186
    // create output var in local scope
Q
Qiao Longfei 已提交
187
    std::vector<framework::SelectedRows *> outs;
188 189 190
    for (auto &table : table_pairs) {
      auto *out =
          local_scope->Var(table.second)->GetMutable<framework::SelectedRows>();
191 192 193
      outs.push_back(out);
    }

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    if (!rpc_ctx.is_distributed) {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto ep_idx = send_rows[i] % pserver_num;
        auto id = send_rows[i] / pserver_num;
        outs_rows_idx[ep_idx].push_back(id);
        outs_dense_idx[ep_idx].push_back(i);
      }

      auto place = platform::CPUPlace();

      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
            outs[out_idx]->mutable_rows()->push_back(idx);
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
            }
          }
        }
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
      }
    } else {
      auto pserver_num = rpc_ctx.epmap.size();

      // split rows index into output sparse vars
      for (size_t i = 0; i < send_rows.size(); ++i) {
        auto out_idx = send_rows[i] % pserver_num;
        outs_rows_idx[out_idx].push_back(send_rows[i]);
        outs_dense_idx[out_idx].push_back(i);
      }
248

249
      auto place = platform::CPUPlace();
250

251 252
      for (size_t out_idx = 0; out_idx < rpc_ctx.splited_varnames.size();
           out_idx++) {
253 254 255 256 257
        auto rows_idx = outs_rows_idx[out_idx];

        auto dims = send_slr.GetCompleteDims();
        dims[0] = rows_idx.size();

258
        outs[out_idx]->set_height(rpc_ctx.height_sections[out_idx]);
259 260 261 262 263
        outs[out_idx]->mutable_rows()->clear();
        outs[out_idx]->mutable_value()->mutable_data<T>(dims, send_slr.place());

        if (rows_idx.size() > 0) {
          for (auto idx : rows_idx) {
264
            outs[out_idx]->mutable_rows()->push_back(idx);
265 266 267 268 269 270 271 272 273
          }
          auto dst = outs[out_idx]->mutable_value()->mutable_data<T>(place);
          for (size_t j = 0; j < rows_idx.size(); j++) {
            if (platform::is_cpu_place(place)) {
              memory::Copy(platform::CPUPlace(), dst + j * row_numel,
                           platform::CPUPlace(),
                           src + outs_dense_idx[out_idx][j] * row_numel,
                           sizeof(T) * row_numel);
            } else {
274 275
              PADDLE_THROW(
                  platform::errors::Unimplemented("do not support GPU now"));
276
            }
277 278
          }
        }
279 280 281 282
        PADDLE_ENFORCE_EQ(
            rows_idx.size(), outs[out_idx]->rows().size(),
            platform::errors::InvalidArgument(
                "rows should has the same size with tensor dim 0"));
283 284 285
      }
    }

286 287 288 289
    for (size_t i = 0; i < table_pairs.size(); i++) {
      auto &send_var_name = table_pairs[i].second;
      auto &endpoint = table_pairs[i].first;
      auto need_send = NeedSend(*local_scope.get(), send_var_name);
Q
Qiao Longfei 已提交
290

291
      VLOG(4) << "send var name: " << send_var_name
292 293
              << " send var endpoint: " << endpoint
              << " need send: " << need_send;
294 295 296 297 298 299 300 301 302

      if (need_send) {
        VLOG(4) << "sending " << send_var_name << " to " << endpoint;

        rets.push_back(rpc_client->AsyncSendVar(
            endpoint, cpu_ctx, *local_scope.get(), send_var_name));
        VLOG(4) << "send var " << send_var_name << " async handle done";
      } else {
        VLOG(4) << "don't send non-initialized variable: "
303
                << rpc_ctx.splited_varnames[i];
304
      }
Q
Qiao Longfei 已提交
305
    }
306 307
  } else {
    PADDLE_THROW("unsupported var type to send!");
Q
Qiao Longfei 已提交
308 309
  }

310
  VLOG(4) << "Prepare to send var " << rpc_ctx.var_name;
311 312
  if (sync) {
    for (auto &handle : rets) {
313
      VLOG(4) << "Wait send var to pserver handle: " << handle;
314 315
      PADDLE_ENFORCE_NE(handle->Wait(), 0U, platform::errors::ExecutionTimeout(
                                                "internal error in RPCClient"));
Q
Qiao Longfei 已提交
316 317 318 319
    }
  }
}

Q
Qiao Longfei 已提交
320 321
template struct ParameterSend<float>;

Q
Qiao Longfei 已提交
322 323 324
};  // namespace distributed
};  // namespace operators
};  // namespace paddle