async_executor.cc 11.9 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
pslib  
heqiaozhi 已提交
32
#include "pslib.h"
W
Wang Guibao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
51 52 53
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->SetParamConfig(&_param_config);
W
Wang Guibao 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

H
heqiaozhi 已提交
67
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
68 69 70 71
    _pslib_ptr =
        std::shared_ptr<paddle::distributed::PSlib>(
            new paddle::distributed::PSlib());
    _pslib_ptr->init_server(dist_desc, index);
H
heqiaozhi 已提交
72
    InitParamConfig();
73 74
}

75 76 77 78 79 80
void AsyncExecutor::InitWorker(const std::string& dist_desc,
                               const std::vector<uint64_t>& host_sign_list,
                               int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    _pslib_ptr->init_worker(
81
        dist_desc, (uint64_t*)(host_sign_list.data()), node_num, index);
H
heqiaozhi 已提交
82

H
heqiaozhi 已提交
83
    InitParamConfig();
H
heqiaozhi 已提交
84 85 86 87 88 89
}

uint64_t AsyncExecutor::StartServer() {
    return _pslib_ptr->run_server();
}

H
heqiaozhi 已提交
90 91 92 93
void AsyncExecutor::StopServer() {
    _pslib_ptr->stop_server();
}

94
void AsyncExecutor::GatherServers(
95 96
    const std::vector<uint64_t>& host_sign_list, int node_num) {
    _pslib_ptr->gather_servers((uint64_t*)(host_sign_list.data()), node_num);
97 98
}

H
heqiaozhi 已提交
99
void AsyncExecutor::InitParamConfig() {
100 101 102 103 104 105 106 107 108 109 110 111
    for (int i = 0; i <
        _pslib_ptr->get_param()->server_param().\
                 downpour_server_param().\
                 downpour_table_param_size();
         ++i) {
        if (_pslib_ptr->get_param()->server_param().\
            downpour_server_param().downpour_table_param(i).\
            table_class().find("SparseTable") != -1) {
            _param_config.fea_dim = _pslib_ptr->get_param()->server_param().\
                                    downpour_server_param().\
                                    downpour_table_param(i).\
                                    accessor().fea_dim();
H
heqiaozhi 已提交
112 113 114
            break;
        }
    }
115 116 117 118 119 120 121 122 123 124 125
    _param_config.slot_dim = _param_config.fea_dim - 2;
    _param_config.tmp_push_dense_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
    _param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
         ++t) {
        _param_config.skip_op.push_back(
            _pslib_ptr->get_param()->trainer_param().skip_op(t));
H
heqiaozhi 已提交
126
    }
127 128 129 130

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().sparse_table_size();
         ++t) {
H
heqiaozhi 已提交
131 132 133 134
        auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
        std::vector<std::string> tmp_sparse_variable_name;
        for (int i = 0u; i < table.slot_value_size(); ++i) {
            tmp_sparse_variable_name.push_back(table.slot_value(i));
135 136
            _param_config.slot_alias_to_table[table.slot_key(i)] =
                table.table_id();
H
heqiaozhi 已提交
137 138 139 140 141 142
        }
        std::vector<std::string> tmp_sparse_gradient_variable_name;
        for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
            tmp_sparse_gradient_variable_name.push_back(
                    table.slot_gradient(i));
        }
143 144 145 146
        _param_config.slot_input_vec[table.table_id()] =
            std::move(tmp_sparse_variable_name);
        _param_config.gradient_var[table.table_id()] =
            std::move(tmp_sparse_gradient_variable_name);
H
heqiaozhi 已提交
147 148
        _param_config.sparse_table_id.push_back(table.table_id());
    }
149 150 151 152

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().dense_table_size();
         ++t) {
H
heqiaozhi 已提交
153 154 155 156 157 158 159 160 161 162
        auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
        std::vector<std::string> tmp_dense_variable_name;
        for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
            tmp_dense_variable_name.push_back(table.dense_variable_name(i));
        }
        std::vector<std::string> tmp_dense_gradient_variable_name;
        for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
            tmp_dense_gradient_variable_name.push_back(
                    table.dense_gradient_variable_name(i));
        }
163 164 165 166
        _param_config.dense_variable_name[table.table_id()] =
            std::move(tmp_dense_variable_name);
        _param_config.dense_gradient_variable_name[table.table_id()] =
            std::move(tmp_dense_gradient_variable_name);
H
heqiaozhi 已提交
167
        _param_config.dense_table_id.push_back(table.table_id());
168
        _param_config.dense_table_size.push_back(table.fea_dim());
H
heqiaozhi 已提交
169 170 171
    }
}

172
void AsyncExecutor::InitModel() {
173
    for (auto table_id : _param_config.dense_table_id) {
174
        std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
175
        for (auto& t : _param_config.dense_variable_name[table_id]) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
            Variable* var = root_scope_->FindVar(t);
            CHECK(var != nullptr) << "var[" << t << "] not found";
            LoDTensor* tensor = var->GetMutable<LoDTensor>();

            float* g = tensor->data<float>();
            CHECK(g != nullptr) << "var[" << t << "] value not initialized";

            float init_range = 0.2;
            int rown = tensor->dims()[0];
            init_range /= sqrt(rown);

            std::normal_distribution<float> ndistr(0.0, 1.0);
            for (auto i = 0u; i < tensor->numel(); ++i) {
                g[i] = ndistr(local_random_engine()) * init_range;
            }

            paddle::ps::Region reg(g, tensor->numel());
            regions.emplace_back(std::move(reg));
        }

196 197 198
        auto push_status =
            _pslib_ptr->_worker_ptr->push_dense_param(
                regions.data(), regions.size(), table_id);
199 200 201 202 203
        push_status.wait();
        auto status = push_status.get();
        if (status != 0) {
            LOG(FATAL) << "push dense param failed, status[" << status << "]";
            exit(-1);
204
        }
205 206 207 208 209 210 211 212 213
    }
}

void AsyncExecutor::SaveModel(const std::string& path) {
    auto ret = _pslib_ptr->_worker_ptr->flush();
    ret.wait();
    ret = _pslib_ptr->_worker_ptr->save(path, 0);
    ret.wait();
    int32_t feasign_cnt = ret.get();
214
    if (feasign_cnt == -1) {  // (colourful-tree) TODO should be feasign_cnt < 0
215 216 217 218 219
        LOG(FATAL) << "save model failed";
        exit(-1);
    }
}

H
heqiaozhi 已提交
220 221 222 223
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
    if (mode == "mpi") {
        DensePullThreadParam param;
        param.ps_client = _pslib_ptr->_worker_ptr;;
224
        param.threshold = 1;
H
heqiaozhi 已提交
225 226 227 228
        param.training_thread_num = actual_thread_num;
        param.root_scope = root_scope_;
        param.dense_params = &_param_config.dense_variable_name;

229 230
        _pull_dense_thread = std::shared_ptr<DensePullThread>(
            new DensePullThread(param));
H
heqiaozhi 已提交
231 232
        _pull_dense_thread->start();
    }
233 234
}

W
Wang Guibao 已提交
235 236 237 238 239
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
H
heqiaozhi 已提交
240
                                const std::string& mode,
W
Wang Guibao 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

258
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
H
heqiaozhi 已提交
282
  PrepareDenseThread(mode);
W
Wang Guibao 已提交
283 284 285
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
H
heqiaozhi 已提交
286 287 288 289 290
    if (mode == "mpi") {
        worker.reset(new AsyncExecutorThreadWorker);
    } else {
        worker.reset(new ExecutorThreadWorker);
    }
W
Wang Guibao 已提交
291 292 293 294 295 296 297 298
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

H
heqiaozhi 已提交
299
  
W
Wang Guibao 已提交
300 301 302 303 304 305 306 307 308
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
H
heqiaozhi 已提交
309 310 311
  if (mode == "mpi") {
    _pull_dense_thread->stop();
  }
W
Wang Guibao 已提交
312 313 314 315 316 317 318
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle