async_executor.cc 11.9 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/async_executor.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/executor_thread_worker.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
H
pslib  
heqiaozhi 已提交
32
#include "pslib.h"
W
Wang Guibao 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace framework {
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
    : root_scope_(scope), place_(place) {}

void AsyncExecutor::CreateThreads(
    ExecutorThreadWorker* worker, const ProgramDesc& main_program,
    const std::shared_ptr<DataFeed>& reader,
    const std::vector<std::string>& fetch_var_names, Scope* root_scope,
    const int thread_index, const bool debug) {
  worker->SetThreadId(thread_index);
  worker->SetDebug(debug);
  worker->SetRootScope(root_scope);
  worker->CreateThreadResource(main_program, place_);
  worker->SetDataFeed(reader);
  worker->SetFetchVarNames(fetch_var_names);
  worker->BindingDataFeedMemory();
51 52 53 54
  worker->SetPSlibPtr(_pslib_ptr);
  worker->SetPullDenseThread(_pull_dense_thread);
  worker->BindingSlotVariableMemory();
  worker->SetParamConfig(&_param_config);
W
Wang Guibao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67
}

void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers,  // NOLINT
                    const int thread_num, const DataFeedDesc& data_feed_desc,
                    const std::vector<std::string>& filelist) {
  readers.resize(thread_num);
  for (size_t i = 0; i < readers.size(); ++i) {
    readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
    readers[i]->Init(data_feed_desc);  // set batch_size and queue_size here
  }
  readers[0]->SetFileList(filelist);
}

H
heqiaozhi 已提交
68
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
69 70 71 72
    _pslib_ptr =
        std::shared_ptr<paddle::distributed::PSlib>(
            new paddle::distributed::PSlib());
    _pslib_ptr->init_server(dist_desc, index);
H
heqiaozhi 已提交
73
    InitParamConfig();
74 75
}

76 77 78 79 80 81 82
void AsyncExecutor::InitWorker(const std::string& dist_desc,
                               const std::vector<uint64_t>& host_sign_list,
                               int node_num, int index) {
    _pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
        new paddle::distributed::PSlib());
    _pslib_ptr->init_worker(
        dist_desc, host_sign_list.data(), node_num, index);
H
heqiaozhi 已提交
83

H
heqiaozhi 已提交
84
    InitParamConfig();
H
heqiaozhi 已提交
85 86 87 88 89 90
}

uint64_t AsyncExecutor::StartServer() {
    return _pslib_ptr->run_server();
}

H
heqiaozhi 已提交
91 92 93 94
void AsyncExecutor::StopServer() {
    _pslib_ptr->stop_server();
}

95 96
void AsyncExecutor::GatherServers(
    std::vector<uint64_t>& host_sign_list, int node_num) {
H
heqiaozhi 已提交
97
    _pslib_ptr->gather_servers(host_sign_list.data(), node_num);
98 99
}

H
heqiaozhi 已提交
100
void AsyncExecutor::InitParamConfig() {
101 102 103 104 105 106 107 108 109 110 111 112
    for (int i = 0; i <
        _pslib_ptr->get_param()->server_param().\
                 downpour_server_param().\
                 downpour_table_param_size();
         ++i) {
        if (_pslib_ptr->get_param()->server_param().\
            downpour_server_param().downpour_table_param(i).\
            table_class().find("SparseTable") != -1) {
            _param_config.fea_dim = _pslib_ptr->get_param()->server_param().\
                                    downpour_server_param().\
                                    downpour_table_param(i).\
                                    accessor().fea_dim();
H
heqiaozhi 已提交
113 114 115
            break;
        }
    }
116 117 118 119 120 121 122 123 124 125 126
    _param_config.slot_dim = _param_config.fea_dim - 2;
    _param_config.tmp_push_dense_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
    _param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
        _pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
         ++t) {
        _param_config.skip_op.push_back(
            _pslib_ptr->get_param()->trainer_param().skip_op(t));
H
heqiaozhi 已提交
127
    }
128 129 130 131

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().sparse_table_size();
         ++t) {
H
heqiaozhi 已提交
132 133 134 135
        auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
        std::vector<std::string> tmp_sparse_variable_name;
        for (int i = 0u; i < table.slot_value_size(); ++i) {
            tmp_sparse_variable_name.push_back(table.slot_value(i));
136 137
            _param_config.slot_alias_to_table[table.slot_key(i)] =
                table.table_id();
H
heqiaozhi 已提交
138 139 140 141 142 143
        }
        std::vector<std::string> tmp_sparse_gradient_variable_name;
        for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
            tmp_sparse_gradient_variable_name.push_back(
                    table.slot_gradient(i));
        }
144 145 146 147
        _param_config.slot_input_vec[table.table_id()] =
            std::move(tmp_sparse_variable_name);
        _param_config.gradient_var[table.table_id()] =
            std::move(tmp_sparse_gradient_variable_name);
H
heqiaozhi 已提交
148 149
        _param_config.sparse_table_id.push_back(table.table_id());
    }
150 151 152 153

    for (auto t = 0u;
         t < _pslib_ptr->get_param()->trainer_param().dense_table_size();
         ++t) {
H
heqiaozhi 已提交
154 155 156 157 158 159 160 161 162 163
        auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
        std::vector<std::string> tmp_dense_variable_name;
        for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
            tmp_dense_variable_name.push_back(table.dense_variable_name(i));
        }
        std::vector<std::string> tmp_dense_gradient_variable_name;
        for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
            tmp_dense_gradient_variable_name.push_back(
                    table.dense_gradient_variable_name(i));
        }
164 165 166 167
        _param_config.dense_variable_name[table.table_id()] =
            std::move(tmp_dense_variable_name);
        _param_config.dense_gradient_variable_name[table.table_id()] =
            std::move(tmp_dense_gradient_variable_name);
H
heqiaozhi 已提交
168
        _param_config.dense_table_id.push_back(table.table_id());
169
        _param_config.dense_table_size.push_back(table.fea_dim());
H
heqiaozhi 已提交
170 171 172
    }
}

173
void AsyncExecutor::InitModel() {
174
    for (auto table_id : _param_config.dense_table_id) {
175
        std::vector<paddle::ps::Region> regions;
H
heqiaozhi 已提交
176
        for (auto& t : _param_config.dense_variable_name[table_id]) {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
            Variable* var = root_scope_->FindVar(t);
            CHECK(var != nullptr) << "var[" << t << "] not found";
            LoDTensor* tensor = var->GetMutable<LoDTensor>();

            float* g = tensor->data<float>();
            CHECK(g != nullptr) << "var[" << t << "] value not initialized";

            float init_range = 0.2;
            int rown = tensor->dims()[0];
            init_range /= sqrt(rown);

            std::normal_distribution<float> ndistr(0.0, 1.0);
            for (auto i = 0u; i < tensor->numel(); ++i) {
                g[i] = ndistr(local_random_engine()) * init_range;
            }

            paddle::ps::Region reg(g, tensor->numel());
            regions.emplace_back(std::move(reg));
        }

197 198 199
        auto push_status =
            _pslib_ptr->_worker_ptr->push_dense_param(
                regions.data(), regions.size(), table_id);
200 201 202 203 204
        push_status.wait();
        auto status = push_status.get();
        if (status != 0) {
            LOG(FATAL) << "push dense param failed, status[" << status << "]";
            exit(-1);
205
        }
206 207 208 209 210 211 212 213 214
    }
}

void AsyncExecutor::SaveModel(const std::string& path) {
    auto ret = _pslib_ptr->_worker_ptr->flush();
    ret.wait();
    ret = _pslib_ptr->_worker_ptr->save(path, 0);
    ret.wait();
    int32_t feasign_cnt = ret.get();
215
    if (feasign_cnt == -1) {  // (colourful-tree) TODO should be feasign_cnt < 0
216 217 218 219 220
        LOG(FATAL) << "save model failed";
        exit(-1);
    }
}

H
heqiaozhi 已提交
221 222 223 224
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
    if (mode == "mpi") {
        DensePullThreadParam param;
        param.ps_client = _pslib_ptr->_worker_ptr;;
225
        param.threshold = 1;
H
heqiaozhi 已提交
226 227 228 229
        param.training_thread_num = actual_thread_num;
        param.root_scope = root_scope_;
        param.dense_params = &_param_config.dense_variable_name;

230 231
        _pull_dense_thread = std::shared_ptr<DensePullThread>(
            new DensePullThread(param));
H
heqiaozhi 已提交
232 233
        _pull_dense_thread->start();
    }
234 235
}

W
Wang Guibao 已提交
236 237 238 239 240
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
                                const std::string& data_feed_desc_str,
                                const std::vector<std::string>& filelist,
                                const int thread_num,
                                const std::vector<std::string>& fetch_var_names,
H
heqiaozhi 已提交
241
                                const std::string& mode,
W
Wang Guibao 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
                                const bool debug) {
  std::vector<std::thread> threads;

  auto& block = main_program.Block(0);
  for (auto var_name : fetch_var_names) {
    auto var_desc = block.FindVar(var_name);
    auto shapes = var_desc->GetShape();
    PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
                   "var %s: Fetched var has wrong shape, "
                   "only variables with the last dimension size 1 supported",
                   var_name);
  }

  DataFeedDesc data_feed_desc;
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc);

259
  actual_thread_num = thread_num;
W
Wang Guibao 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  int file_cnt = filelist.size();
  PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");

  if (actual_thread_num > file_cnt) {
    VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
            << ". Changing thread_num = " << file_cnt;
    actual_thread_num = file_cnt;
  }

  /*
    readerDesc: protobuf description for reader initlization
    argument: class_name, batch_size, use_slot, queue_size, buffer_size,
    padding_index

    reader:
    1) each thread has a reader, reader will read input data and
    put it into input queue
    2) each reader has a Next() iterface, that can fetch an instance
    from the input queue
   */
  // todo: should be factory method for creating datafeed
  std::vector<std::shared_ptr<DataFeed>> readers;
  PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
H
heqiaozhi 已提交
283
  PrepareDenseThread(mode);
W
Wang Guibao 已提交
284 285 286
  std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
  workers.resize(actual_thread_num);
  for (auto& worker : workers) {
H
heqiaozhi 已提交
287 288 289 290 291
    if (mode == "mpi") {
        worker.reset(new AsyncExecutorThreadWorker);
    } else {
        worker.reset(new ExecutorThreadWorker);
    }
W
Wang Guibao 已提交
292 293 294 295 296 297 298 299
  }

  // prepare thread resource here
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    CreateThreads(workers[thidx].get(), main_program, readers[thidx],
                  fetch_var_names, root_scope_, thidx, debug);
  }

H
heqiaozhi 已提交
300
  
W
Wang Guibao 已提交
301 302 303 304 305 306 307 308 309
  // start executing ops in multiple threads
  for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
    threads.push_back(
        std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
  }

  for (auto& th : threads) {
    th.join();
  }
H
heqiaozhi 已提交
310 311 312
  if (mode == "mpi") {
    _pull_dense_thread->stop();
  }
W
Wang Guibao 已提交
313 314 315 316 317 318 319
  root_scope_->DropKids();

  return;
}

}  // einit_modelnd namespace framework
}  // end namespace paddle