analysis_predictor.cc 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/memory/memcpy.h"
38
#include "paddle/fluid/platform/cpu_helper.h"
39
#include "paddle/fluid/platform/device_context.h"
40
#include "paddle/fluid/platform/gpu_info.h"
41
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
42 43
#include "paddle/fluid/platform/profiler.h"

44 45 46 47
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
52 53
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
54
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
55 56
#endif

57 58
namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
106 107 108 109
  } else if (platform::is_gpu_place(place)) {
    PADDLE_ENFORCE_EQ(platform::is_xpu_place(place), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
110 111 112 113
#ifdef PADDLE_WITH_CUDA
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
114
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
115 116 117 118 119 120 121
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
122 123 124 125 126 127 128 129 130 131 132 133
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    auto dst_xpu_place = BOOST_GET_CONST(platform::XPUPlace, place);
    memory::Copy(dst_xpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with XPU, should not reach here."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "The analysis predictor supports CPU, GPU and XPU now."));
134 135 136 137 138 139 140 141 142 143
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
144
bool AnalysisPredictor::Init(
145 146
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
147
  VLOG(3) << "Predictor::init()";
148 149
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
150 151
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
152
    platform::EnableProfiler(tracking_device);
153 154 155
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
156 157
  }

158
  // no matter with or without MKLDNN
L
luotao1 已提交
159
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
160

161 162 163 164 165 166 167 168 169 170 171 172 173
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
174
  }
175 176 177 178 179 180 181 182 183

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
184
  if (parent_scope) {
185 186
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
187 188
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
189
    scope_ = parent_scope;
190
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
191
  } else {
192
    paddle::framework::InitDevices();
193
    scope_.reset(new paddle::framework::Scope(), [](framework::Scope *scope) {
194
      delete scope;
195 196 197 198 199
#ifdef PADDLE_WITH_CUDA
      for (int dev_id = 0; dev_id < paddle::platform::GetCUDADeviceCount();
           ++dev_id) {
        memory::Release(platform::CUDAPlace(dev_id));
      }
200 201 202 203 204 205
#endif
#ifdef PADDLE_WITH_XPU
      for (int dev_id = 0; dev_id < paddle::platform::GetXPUDeviceCount();
           ++dev_id) {
        memory::Release(platform::XPUPlace(dev_id));
      }
206 207
#endif
      memory::Release(platform::CPUPlace());
208
    });
209
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
210
  }
211 212 213 214 215
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
216 217
  if (!program) {
    if (!LoadProgramDesc()) return false;
218 219 220 221 222 223 224 225 226
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

227 228 229 230
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
231
  } else {
232 233
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
234 235
    inference_program_ = program;
  }
M
Michal Gallus 已提交
236

237 238 239 240 241
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
242
  if (config_.use_gpu()) {
243 244 245
    PADDLE_ENFORCE_EQ(config_.use_xpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
246 247 248 249 250 251 252 253 254 255
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
#ifdef PADDLE_WITH_CUDA
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
256 257
  } else if (config_.use_xpu()) {
    place_ = paddle::platform::XPUPlace(config_.xpu_device_id());
258 259 260 261 262 263 264 265
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
266
                     config_.use_feed_fetch_ops_);
267

268 269 270
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
271

272 273 274
  return true;
}

275 276
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
277 278 279 280 281 282 283 284 285 286 287 288
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
289
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
290 291 292
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
293 294 295 296
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
297 298 299
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
300 301 302
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
303 304 305
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
306
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
307 308 309 310 311 312 313 314
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
315 316 317 318 319 320 321 322
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
323 324 325 326
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
327 328 329 330
  }
#endif
}

331 332 333
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
334
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
335 336 337
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
338
  VLOG(3) << "Predictor::predict";
339 340 341 342
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
343 344
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
345 346
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
347
    return false;
348
  }
M
Michal Gallus 已提交
349

350 351 352
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
353

354 355 356 357
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
358
  }
Y
Yan Chunwei 已提交
359

M
minqiyang 已提交
360
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
361

Y
Yan Chunwei 已提交
362 363 364 365 366
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
367 368 369
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
370
  tensor_array_batch_cleaner_.ResetNoTensorVars();
371 372 373 374

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
375 376
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
377
#endif
378
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
379 380 381 382
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
383
#endif
384 385
  return true;
}
386

387 388
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
389
  VLOG(3) << "Predictor::set_feed";
390 391 392 393 394 395 396 397 398 399
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
400 401
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
402 403 404
      return false;
    }
    int idx = -1;
405
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
406 407
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
408 409
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
410 411
      }
      idx = feed_names_[name];
412
    } else {
413
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
414
    }
415
    framework::SetFeedVariable(scope, *input, "feed", idx);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
442
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
443 444
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
445
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
446 447 448 449 450
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
451
    framework::FetchType &fetch_var =
452
        framework::GetFetchVariable(*scope, "fetch", idx);
453
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
454 455
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
456
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
457
    if (type == framework::proto::VarType::FP32) {
458 459
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
460
    } else if (type == framework::proto::VarType::INT64) {
461 462
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
463 464 465
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
466
    } else {
467
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
468 469
    }
  }
Y
Yan Chunwei 已提交
470 471
  return true;
}
472

473
void AnalysisPredictor::PrepareArgument() {
474
  argument_.SetUseGPU(config_.use_gpu());
475
  argument_.SetUseFcPadding(config_.use_fc_padding());
476
  argument_.SetGPUDeviceId(config_.gpu_device_id());
477
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
478
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
479
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
480
  // Analyze inference_program
481
  argument_.SetPredictorID(predictor_id_);
482
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
483 484
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
485
  } else {
486 487 488 489 490 491
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
492
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
493

494 495
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
496
  }
497

498
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
499
    LOG(INFO) << "TensorRT subgraph engine is enabled";
500 501 502
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
503
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
504
    argument_.SetTensorRtDisabledOPs(config_.trt_disabled_ops_);
505 506
    argument_.SetTensorRtUseDLA(config_.trt_use_dla_);
    argument_.SetTensorRtDLACore(config_.trt_dla_core_);
N
nhzlx 已提交
507
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
508
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
509
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
510
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
511 512 513
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
514
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
515
  }
516

石晓伟 已提交
517
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
518 519
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
520 521 522
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
523 524 525
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
石晓伟 已提交
526 527 528
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

529
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
530
    LOG(INFO) << "MKLDNN is enabled";
531 532 533
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

534 535 536 537 538 539 540 541
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
542 543 544 545
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
546 547
#endif

548
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
549 550 551 552
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
553
  argument_.SetDisableLogs(config_.glog_info_disabled());
554
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
555
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
556
  argument_.SetScopeNotOwned(scope_.get());
557 558 559 560 561
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
562 563
  Analyzer().Run(&argument_);

564 565 566
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
567 568
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
569
  inference_program_.reset(
570
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
571 572 573 574
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
575
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
576
}
577 578

template <>
579 580
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
581 582
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
583 584 585 586
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
587
  VLOG(3) << "create AnalysisConfig";
588 589 590 591
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
592

593
  if (config.use_gpu()) {
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
618

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
649 650 651 652 653 654
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
655 656 657 658
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
659 660
  // Each config can only be used for one predictor.
  config.SetInValid();
661 662 663 664 665 666 667
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
668 669
    return nullptr;
  }
670

G
Gabor Buella 已提交
671
  return predictor;
672 673
}

674 675 676 677 678 679 680 681 682 683 684 685
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

686
void AnalysisPredictor::PrepareFeedFetch() {
687 688 689
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
690
  CreateFeedFetchVar(sub_scope_);
691 692
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
693
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
694 695 696 697 698
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
699
      idx2feeds_[idx] = op->Output("Out")[0];
700
    } else if (op->Type() == "fetch") {
701
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
702 703
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
704
      }
Y
Yan Chunwei 已提交
705
      fetches_[idx] = op;
N
nhzlx 已提交
706
      idx2fetches_[idx] = op->Input("X")[0];
707 708 709 710
    }
  }
}

711
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
712 713
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
714
  auto *var = scope->Var("feed");
715
  var->GetMutable<framework::FeedList>();
716
  var = scope->Var("fetch");
717
  var->GetMutable<framework::FetchList>();
718 719
}

N
nhzlx 已提交
720 721 722 723 724 725 726 727
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

728 729 730 731 732 733
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
734 735
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
736 737 738 739 740
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
741 742 743 744 745 746 747 748
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

749 750
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
751 752 753 754 755
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
756 757 758 759
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
760 761
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
762 763 764 765 766 767
  } else if (platform::is_xpu_place(place_)) {
    PADDLE_ENFORCE_EQ(config_.use_gpu(), false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
    auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
    res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
N
nhzlx 已提交
768
  } else {
769
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
770 771
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
772 773 774 775 776
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
777 778 779 780 781
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
782 783 784 785
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
786 787
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
788 789 790
  } else if (platform::is_xpu_place(place_)) {
    auto xpu_place = BOOST_GET_CONST(platform::XPUPlace, place_);
    res->SetPlace(PaddlePlace::kXPU, xpu_place.GetDeviceId());
N
nhzlx 已提交
791
  } else {
792
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
793 794
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
795 796 797 798
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
799
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
800 801 802 803 804 805 806 807 808 809 810 811
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

812
  executor_->Run();
Y
Yan Chunwei 已提交
813
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
814
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
815
  tensor_array_batch_cleaner_.ResetTensorArray();
816 817 818 819

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
820 821 822
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
823
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
824 825 826 827 828
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
829 830 831 832 833
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
834
  std::string filename;
835 836 837
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
838 839 840
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
841
    filename = config_.prog_file();
842
  } else {
843
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
844 845 846 847
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
848
    LOG(ERROR) << string::Sprintf(
849 850
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
851 852
    return false;
  }
853 854 855

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
856
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
857 858 859
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
860 861 862 863 864
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
865 866 867 868 869 870 871 872
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
873
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
874
  }
875 876 877 878 879 880
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
881 882
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

904
      if (!config_.params_file().empty()) {
905 906 907 908 909 910
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
911
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
912 913 914 915 916
        op->CheckAttrs();
      }
    }
  }

917
  if (!config_.params_file().empty()) {
918 919 920 921 922 923
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
924
    op->SetAttr("file_path", {config_.params_file()});
925 926 927 928
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
929
  framework::NaiveExecutor e(place_);
930 931 932 933
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

934 935
  return true;
}
936

937 938 939 940 941
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
961
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
962
bool AnalysisPredictor::SaveTrtCalibToDisk() {
963 964 965
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
966 967 968 969
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
970
          BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
971
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
972 973 974 975
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
976 977
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
978
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
979
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
980 981
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
982 983 984
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
985

N
nhzlx 已提交
986
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
987 988 989
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
990

N
nhzlx 已提交
991 992 993 994 995
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
996
      std::string calibration_table_data_path =
N
nhzlx 已提交
997 998 999 1000
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
1001 1002 1003 1004 1005

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
1006 1007 1008 1009
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
1010
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
1011 1012
  return true;
}
N
nhzlx 已提交
1013
#endif
N
nhzlx 已提交
1014

1015
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
1016
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
1017
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
1018 1019
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
1020 1021
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
1022
#endif
1023
  if (config_.with_profile_) {
1024 1025 1026 1027 1028 1029
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
1030

1031 1032 1033 1034 1035 1036
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
1037 1038

  memory::Release(place_);
1039 1040
}

1041
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1042
  std::lock_guard<std::mutex> lk(clone_mutex_);
1043 1044 1045 1046 1047
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1048
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1049 1050 1051
  return inference_program_->Proto()->SerializeAsString();
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1091
template <>
1092 1093
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1094
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1095 1096
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1097 1098
}

1099
}  // namespace paddle
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1110
USE_TRT_CONVERTER(matmul);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1122 1123
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1124
USE_TRT_CONVERTER(split);
1125 1126
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1127
USE_TRT_CONVERTER(leaky_relu);
1128 1129
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1130
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1131 1132 1133
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1134 1135
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1136
USE_TRT_CONVERTER(slice);
1137
USE_TRT_CONVERTER(scale);
1138
USE_TRT_CONVERTER(stack);
1139
USE_TRT_CONVERTER(clip);
1140
#endif
W
Wilber 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

namespace paddle_infer {

void Tensor::Reshape(const std::vector<int> &shape) { tensor_->Reshape(shape); }

std::vector<int> Tensor::shape() const { return tensor_->shape(); }

void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
  return tensor_->SetLoD(x);
}

std::vector<std::vector<size_t>> Tensor::lod() const { return tensor_->lod(); }

const std::string &Tensor::name() const { return tensor_->name(); }

DataType Tensor::type() const { return tensor_->type(); }

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetInputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetOutputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1197 1198
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer