test_sparse_elementwise_op.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
from operator import __add__, __sub__, __mul__, __truediv__

import numpy as np
import paddle
from paddle.fluid.framework import _test_eager_guard

op_list = [__add__, __sub__, __mul__, __truediv__]


def get_actual_res(x, y, op):
    if op == __add__:
        res = paddle.incubate.sparse.add(x, y)
    elif op == __sub__:
        res = paddle.incubate.sparse.subtract(x, y)
    elif op == __mul__:
        res = paddle.incubate.sparse.multiply(x, y)
    elif op == __truediv__:
        res = paddle.incubate.sparse.divide(x, y)
    else:
        raise ValueError("unsupported op")
    return res


class TestSparseElementWiseAPI(unittest.TestCase):
    """
    test paddle.sparse.add, subtract, multiply, divide
    """

    def setUp(self):
        paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        np.random.seed(2022)
        self.op_list = op_list
        self.csr_shape = [128, 256]
        self.coo_shape = [4, 8, 3, 5]
        self.support_dtypes = ['float32', 'float64', 'int32', 'int64']

    def func_test_csr(self, op):
        for dtype in self.support_dtypes:
            x = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)
            y = np.random.randint(-255, 255, size=self.csr_shape).astype(dtype)

            dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

            s_dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
            s_dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)
            csr_x = s_dense_x.to_sparse_csr()
            csr_y = s_dense_y.to_sparse_csr()

            actual_res = get_actual_res(csr_x, csr_y, op)
            actual_res.backward(actual_res)

            expect_res = op(dense_x, dense_y)
            expect_res.backward(expect_res)

            self.assertTrue(
                np.allclose(expect_res.numpy(),
                            actual_res.to_dense().numpy(),
                            equal_nan=True))
            if not (op == __truediv__ and dtype in ['int32', 'int64']):
                self.assertTrue(
                    np.allclose(dense_x.grad.numpy(),
                                csr_x.grad.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_y.grad.numpy(),
                                csr_y.grad.to_dense().numpy(),
                                equal_nan=True))

    def func_test_coo(self, op):
        for sparse_dim in range(len(self.coo_shape) - 1, len(self.coo_shape)):
            for dtype in self.support_dtypes:
                x = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)
                y = np.random.randint(-255, 255,
                                      size=self.coo_shape).astype(dtype)

                dense_x = paddle.to_tensor(x, dtype=dtype, stop_gradient=False)
                dense_y = paddle.to_tensor(y, dtype=dtype, stop_gradient=False)

                s_dense_x = paddle.to_tensor(x,
                                             dtype=dtype,
                                             stop_gradient=False)
                s_dense_y = paddle.to_tensor(y,
                                             dtype=dtype,
                                             stop_gradient=False)
                coo_x = s_dense_x.to_sparse_coo(sparse_dim)
                coo_y = s_dense_y.to_sparse_coo(sparse_dim)

                actual_res = get_actual_res(coo_x, coo_y, op)
                actual_res.backward(actual_res)

                expect_res = op(dense_x, dense_y)
                expect_res.backward(expect_res)

                self.assertTrue(
                    np.allclose(expect_res.numpy(),
                                actual_res.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_x.grad.numpy(),
                                coo_x.grad.to_dense().numpy(),
                                equal_nan=True))
                self.assertTrue(
                    np.allclose(dense_y.grad.numpy(),
                                coo_y.grad.to_dense().numpy(),
                                equal_nan=True))

    def test_support_dtypes_csr(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
128 129
            for op in op_list:
                self.func_test_csr(op)
130 131 132 133

    def test_support_dtypes_coo(self):
        paddle.device.set_device('cpu')
        if paddle.device.get_device() == "cpu":
134 135
            for op in op_list:
                self.func_test_coo(op)
136 137 138 139 140


if __name__ == "__main__":
    paddle.device.set_device('cpu')
    unittest.main()