random.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

G
guofei 已提交
17 18
import numpy as np

C
cc 已提交
19
from ..fluid import core
G
guofei 已提交
20
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
21 22 23
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
24
from ..fluid.layers import utils, uniform_random, gaussian_random
S
silingtong123 已提交
25 26
from ..fluid.layers.tensor import fill_constant

27 28 29 30 31 32 33 34 35 36 37
from ..fluid.io import shuffle  #DEFINE_ALIAS

__all__ = [
    #       'gaussin',
    #       'uniform',
    'shuffle',
    'randn',
    'rand',
    'randint',
    'randperm'
]
S
silingtong123 已提交
38 39 40 41 42 43 44 45 46


def randint(low,
            high=None,
            shape=None,
            out=None,
            dtype=None,
            device=None,
            stop_gradient=False,
47
            seed=0,
S
silingtong123 已提交
48 49
            name=None):
    """
50 51
	:alias_main: paddle.randint
	:alias: paddle.randint,paddle.tensor.randint,paddle.tensor.random.randint
S
swtkiwi 已提交
52

S
silingtong123 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the
    specified data type in the interval [low, high). If high is None (the default), then results are from [0, low).

    Args:
        low (int): The lower bound on the range of random values to generate, the low is included in the range.
            (unless high=None, in which case this parameter is one above the highest such integer).
        high (int, optional): The upper bound on the range of random values to generate, the high is excluded 
            in the range. Default None(see above for behavior if high=None).
        shape (list|tuple|Variable, optional): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be 
                                     int32 or int64. Default is None, in which case the shape is [1].
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
            which can be int32, int64, if dytpe is `None`, the data
            type of created Tensor is `int64`
        device(str, optional): This parameter specifies that the Tensor is created 
            on the GPU or CPU.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is False.
76 77 78 79
        seed (int, optional): Random seed used for permute samples. If seed is 
            equal to 0, it means use a seed generated by the system. Note that 
            if seed is not 0, this operator will always generate the same random 
            permutation every time. Default: 0.
S
silingtong123 已提交
80 81 82 83 84 85 86 87 88 89 90
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns: 
        Variable: A Tensor of the specified shape filled with random integers.

    Raises:
        TypeError: Randint's low must less then high.

    Examples:
        .. code-block:: python
91

S
silingtong123 已提交
92
            import paddle
93
            import paddle.fluid as fluid
S
silingtong123 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64")

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")

            # example 3:
            # attr shape is a Variable, the data type must be int64 or int32.
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
108
            result_3 = paddle.randint(low=-5, high=5, shape=var_shape, dtype="int32")
S
silingtong123 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64")

            # example 4:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
            result_4 = paddle.randint(10)
     """

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert isinstance(dim, int) or isinstance(dim, long)
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
                    "Each dimension size given in shape must not be negative "
                    "except one unknown dimension.")
        return attrs_shape

    if dtype is None:
        dtype = 'int64'
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')

    inputs = dict()
    attrs = dict()

    if shape is None:
        shape = [1]
        assert len(shape) > 0, ("The size of argument(shape) can't be zero.")

    helper = LayerHelper("randint", **locals())

    if in_dygraph_mode():
        attrs['shape'] = shape
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            if utils._contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
            else:
                attrs["shape"] = get_attr_shape(shape)
    check_type(shape, 'shape', (list, tuple, Variable), 'randint')

    if high is None:
        high = low
        low = 0
    attrs['low'] = low
    attrs['high'] = high
177
    attrs['seed'] = seed
S
silingtong123 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    if (low >= high):
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False)
    else:
        check_dtype(dtype, 'dtype',
                    convert_dtype(out.dtype), 'randint',
                    "(The dtype in randint must be the same with out's dtype.)")
    attrs['dtype'] = out.dtype
    out.stop_gradient = stop_gradient
C
cc 已提交
195

S
silingtong123 已提交
196 197 198 199 200 201 202 203 204 205 206
    if device is None:
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    else:
        with device_guard(device):
            helper.append_op(
                type='randint',
                inputs=inputs,
                outputs={'Out': out},
                attrs=attrs)
    return out
C
cc 已提交
207 208


209
def randn(shape, dtype=None, name=None):
G
guofei 已提交
210
    """
211 212
	:alias_main: paddle.randn
	:alias: paddle.randn,paddle.tensor.randn,paddle.tensor.random.randn
S
swtkiwi 已提交
213

G
guofei 已提交
214
    This function returns a tensor filled with random numbers from a normal 
215
    distribution with mean 0 and standard deviation 1 (also called the standard normal
G
guofei 已提交
216 217 218
    distribution).

    Args:
219 220 221 222 223 224 225
        shape(list|tuple|Variable): Shape of the Tensor to be created. The data
            type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
            the elements of it should be integers or Tensors with shape [1]. If
            ``shape`` is a Variable, it should be an 1-D Tensor .
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output
            tensor, which can be float32, float64. If dtype is `None` , the data
            type of output tensor is `float32` . Default is None.
G
guofei 已提交
226 227 228 229 230
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.

    Returns:
231
        Random tensor whose data is drawn from a standard normal distribution,
G
guofei 已提交
232 233
        dtype: flaot32 or float64 as specified.

234
    Return type: Variable
G
guofei 已提交
235 236

    Raises:
237
        TypeError: If the type of `shape` is not Variable, list or tuple.
G
guofei 已提交
238 239 240 241 242 243
        TypeError: If the data type of `dtype` is not float32 or float64.
        ValueError: If the length of `shape` is not bigger than 0.

    Examples:
        .. code-block:: python

244 245
        import paddle
        import numpy as np
G
guofei 已提交
246

247
        paddle.enable_imperative()
G
guofei 已提交
248

249 250 251 252
        # example 1: attr shape is a list which doesn't contain tensor Variable.
        result_1 = paddle.randn(shape=[2, 3])
        # [[-2.923464    0.11934398 -0.51249987]
        #  [ 0.39632758  0.08177969  0.2692008 ]]
G
guofei 已提交
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        # example 2: attr shape is a list which contains tensor Variable.
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.randn(shape=[dim_1, dim_2, 2])
        # [[[-2.8852394  -0.25898588]
        #   [-0.47420555  0.17683524]
        #   [-0.7989969   0.00754541]]
        #  [[ 0.85201347  0.32320443]
        #   [ 1.1399018   0.48336947]
        #   [ 0.8086993   0.6868893 ]]]

        # example 3: attr shape is a Variable, the data type must be int64 or int32.
        var_shape = paddle.imperative.to_variable(np.array([2, 3]))
        result_3 = paddle.randn(var_shape)
        # [[-2.878077    0.17099959  0.05111201]
        #  [-0.3761474  -1.044801    1.1870178 ]]
G
guofei 已提交
270

271
    """
G
guofei 已提交
272 273 274
    if dtype is None:
        dtype = 'float32'

275 276 277
    out = gaussian_random(
        shape=shape, mean=0.0, std=1.0, seed=0, dtype=dtype, name=name)
    out.stop_gradient = True
G
guofei 已提交
278 279 280
    return out


C
cc 已提交
281
@templatedoc()
282
def randperm(n, dtype="int64", name=None):
C
cc 已提交
283
    """
284 285
	:alias_main: paddle.randperm
	:alias: paddle.randperm,paddle.tensor.randperm,paddle.tensor.random.randperm
S
swtkiwi 已提交
286

C
cc 已提交
287 288 289
    ${comment}

    Args:
290 291 292 293 294 295 296
        n(int): The upper bound (exclusive), and it should be greater than 0.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the 
            output Tensor. Supported data types: int32, int64, float32, float64.
            Default: int32.
        name(str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
            Default is None.
C
cc 已提交
297 298 299 300 301 302 303 304 305 306

    Returns:
        ${out_comment}.

    Return Type:
        ${out_type}

    Examples:
        .. code-block:: python

307
        import paddle
C
cc 已提交
308

309
        paddle.enable_imperative()
C
cc 已提交
310

311 312
        result_1 = paddle.randperm(5)
        # [4 1 2 3 0]
C
cc 已提交
313

314 315
        result_2 = paddle.randperm(7, 'int32')
        # [1 6 2 0 4 3 5]
C
cc 已提交
316 317
 
    """
318 319 320 321 322
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
323 324 325

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
326 327
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
328 329

    helper = LayerHelper("randperm", **locals())
330 331 332 333
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
334
    out.stop_gradient = True
C
cc 已提交
335
    return out
X
Xing Wu 已提交
336 337


338
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
339
    """
340 341
	:alias_main: paddle.rand
	:alias: paddle.rand,paddle.tensor.rand,paddle.tensor.random.rand
S
swtkiwi 已提交
342

X
Xing Wu 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [0, 1).

    Examples:
    ::

        Input:
          shape = [1, 2]

        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
356 357 358 359 360 361 362 363 364 365
        shape(list|tuple|Variable): Shape of the Tensor to be created. The data
            type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple,
            the elements of it should be integers or Tensors with shape [1]. If
            ``shape`` is a Variable, it should be an 1-D Tensor .
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the
            output tensor which can be float32, float64, if dytpe is `None`,
            the data type of created tensor is `float32`
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
X
Xing Wu 已提交
366
    Returns:
367 368
        Variable: A Tensor of the specified shape filled with random numbers
        from a uniform distribution on the interval [0, 1).
X
Xing Wu 已提交
369 370 371 372 373 374 375

    Raises:
        TypeError: The shape type should be list or tupple or Variable.

    Examples:
        .. code-block:: python

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        import paddle
        import numpy as np

        paddle.enable_imperative()
        # example 1: attr shape is a list which doesn't contain tensor Variable.
        result_1 = paddle.rand(shape=[2, 3])
        # [[0.451152  , 0.55825245, 0.403311  ],
        #  [0.22550228, 0.22106001, 0.7877319 ]]

        # example 2: attr shape is a list which contains tensor Variable.
        dim_1 = paddle.fill_constant([1], "int64", 2)
        dim_2 = paddle.fill_constant([1], "int32", 3)
        result_2 = paddle.rand(shape=[dim_1, dim_2, 2])
        # [[[0.8879919  0.25788337]
        #   [0.28826773 0.9712097 ]
        #   [0.26438272 0.01796806]]
        #  [[0.33633623 0.28654453]
        #   [0.79109055 0.7305809 ]
        #   [0.870881   0.2984597 ]]]

        # example 3: attr shape is a Variable, the data type must be int64 or int32.
        var_shape = paddle.imperative.to_variable(np.array([2, 3]))
        result_3 = paddle.rand(var_shape)
        # [[0.22920267 0.841956   0.05981819]
        #  [0.4836288  0.24573246 0.7516129 ]]
X
Xing Wu 已提交
401 402 403 404

    """
    if dtype is None:
        dtype = 'float32'
405 406 407 408

    out = uniform_random(shape, dtype, min=0.0, max=1.0, name=name)
    out.stop_gradient = True
    return out