random.py 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

17 18 19 20 21 22
# __all__ = ['gaussin', 
#            'uniform', 
#            'shuffle',
#            'randn',
#            'rand',
#            'randint']
C
cc 已提交
23 24

from ..fluid import core
S
silingtong123 已提交
25
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator, Variable
C
cc 已提交
26 27 28
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
S
silingtong123 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
from ..fluid.layers import utils
from ..fluid.layers.tensor import fill_constant

__all__ = ['randperm', 'randint']


def randint(low,
            high=None,
            shape=None,
            out=None,
            dtype=None,
            device=None,
            stop_gradient=False,
            name=None):
    """
    This function returns a Tensor filled with random integers from the "discrete uniform" distribution of the
    specified data type in the interval [low, high). If high is None (the default), then results are from [0, low).

    Args:
        low (int): The lower bound on the range of random values to generate, the low is included in the range.
            (unless high=None, in which case this parameter is one above the highest such integer).
        high (int, optional): The upper bound on the range of random values to generate, the high is excluded 
            in the range. Default None(see above for behavior if high=None).
        shape (list|tuple|Variable, optional): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be 
                                     int32 or int64. Default is None, in which case the shape is [1].
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output Tensor
            which can be int32, int64, if dytpe is `None`, the data
            type of created Tensor is `int64`
        device(str, optional): This parameter specifies that the Tensor is created 
            on the GPU or CPU.
        stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable,
            default value is False.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns: 
        Variable: A Tensor of the specified shape filled with random integers.

    Raises:
        TypeError: Randint's low must less then high.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.tensor as tensor

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = paddle.randint(low=-5, high=5, shape=[3, 4], dtype="int64")

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = paddle.randint(low=-5, high=5, shape=[dim_1, dim_2], dtype="int32")

            # example 3:
            # attr shape is a Variable, the data type must be int64 or int32.
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = padddle.randint(low=-5, high=5, shape=var_shape, dtype="int32")
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = paddle.randint(low=-5, high=5, shape=var_shape_int32, dtype="int64")

            # example 4:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
            result_4 = paddle.randint(10)
     """

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert isinstance(dim, int) or isinstance(dim, long)
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
                    "Each dimension size given in shape must not be negative "
                    "except one unknown dimension.")
        return attrs_shape

    if dtype is None:
        dtype = 'int64'
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')

    inputs = dict()
    attrs = dict()

    if shape is None:
        shape = [1]
        assert len(shape) > 0, ("The size of argument(shape) can't be zero.")

    helper = LayerHelper("randint", **locals())

    if in_dygraph_mode():
        attrs['shape'] = shape
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            if utils._contain_var(shape):
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)
            else:
                attrs["shape"] = get_attr_shape(shape)
    check_type(shape, 'shape', (list, tuple, Variable), 'randint')

    if high is None:
        high = low
        low = 0
    attrs['low'] = low
    attrs['high'] = high
    if (low >= high):
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=dtype, persistable=False)
    else:
        check_dtype(dtype, 'dtype',
                    convert_dtype(out.dtype), 'randint',
                    "(The dtype in randint must be the same with out's dtype.)")
    attrs['dtype'] = out.dtype
    out.stop_gradient = stop_gradient
C
cc 已提交
180

S
silingtong123 已提交
181 182 183 184 185 186 187 188 189 190 191
    if device is None:
        helper.append_op(
            type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    else:
        with device_guard(device):
            helper.append_op(
                type='randint',
                inputs=inputs,
                outputs={'Out': out},
                attrs=attrs)
    return out
C
cc 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278


@templatedoc()
def randperm(n,
             out=None,
             dtype="int64",
             device=None,
             stop_gradient=True,
             seed=0):
    """
    ${comment}

    Args:
        n (int): The upper bound (exclusive), and it should be greater than 0.
        out (Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            If out is None, a new Varibale will be create to store the result. 
            Default: None.
        dtype (np.dtype|core.VarDesc.VarType|str, optional): The type of the 
            output Tensor. Supported data types: int64, int32. Default: int32.
        device (str, optional): Specific the output variable to be saved in cpu
            or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output
            variable will be automatically assigned devices.
            Default: None.
        stop_gradient (bool, optional): Whether grad should record operations 
            on the returned tensor. Default: True.
        seed (int, optional): Random seed used for permute samples. If seed is 
            equal to 0, it means use a seed generated by the system. Note that 
            if seed is not 0, this operator will always generate the same random 
            permutation every time. Default: 0.

    Returns:
        ${out_comment}.

    Return Type:
        ${out_type}

    Examples:
        .. code-block:: python

	    import paddle
	    import paddle.fluid as fluid

	    num = 6
	    is_use_gpu = False

	    data_1 = paddle.randperm(num)
	    fluid.layers.Print(data_1)

	    data_2 = paddle.randperm(num, dtype="int32", seed=1)
	    fluid.layers.Print(data_2)

	    data_3 = paddle.randperm(num, stop_gradient=False, device="cpu")
	    fluid.layers.Print(data_3)

	    paddle.randperm(num, out=data_3)
	    fluid.layers.Print(data_3)

	    place = fluid.CUDAPlace(0) if is_use_gpu else fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
	    exe.run()
 
    """

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
    check_dtype(dtype, 'dtype', ['int64', 'int32'], 'randperm')
    dtype = convert_dtype(dtype)
    if device not in [None, 'cpu', 'gpu']:
        raise ValueError("The input device should in [None, 'cpu', 'gpu'].")
    check_type(stop_gradient, 'stop_gradient', bool, 'randperm')

    helper = LayerHelper("randperm", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        check_variable_and_dtype(out, 'out', [dtype], 'randperm')
    if stop_gradient:
        out.stop_gradient = True
    inputs = dict()
    outputs = {'Out': [out]}
    attrs = {'n': n, 'dtype': out.dtype, 'seed': seed}
    with device_guard(device):
        helper.append_op(
            type='randperm', inputs=inputs, outputs=outputs, attrs=attrs)
    return out