mnist.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import gzip
import struct
import numpy as np
21
from PIL import Image
22

23
import paddle
24
from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
26

L
LielinJiang 已提交
27
__all__ = ["MNIST", "FashionMNIST"]
28 29 30 31


class MNIST(Dataset):
    """
K
Kaipeng Deng 已提交
32
    Implementation of `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset
33 34 35

    Args:
        image_path(str): path to image file, can be set None if
36
            :attr:`download` is True. Default None, default data path: ~/.cache/paddle/dataset/mnist
37
        label_path(str): path to label file, can be set None if
38
            :attr:`download` is True. Default None, default data path: ~/.cache/paddle/dataset/mnist
39
        mode(str): 'train' or 'test' mode. Default 'train'.
40
        download(bool): download dataset automatically if
K
Kaipeng Deng 已提交
41
            :attr:`image_path` :attr:`label_path` is not set. Default True
42 43 44 45 46
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
            
47 48 49 50 51 52 53
    Returns:
        Dataset: MNIST Dataset.

    Examples:
        
        .. code-block:: python

54
            from paddle.vision.datasets import MNIST
55 56 57 58 59

            mnist = MNIST(mode='test')

            for i in range(len(mnist)):
                sample = mnist[i]
60
                print(sample[0].size, sample[1])
61 62

    """
L
LielinJiang 已提交
63 64 65 66 67 68 69 70 71 72
    NAME = 'mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
73 74 75 76 77 78

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 mode='train',
                 transform=None,
79 80
                 download=True,
                 backend=None):
81 82
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
83 84 85 86 87 88 89 90 91

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
                "Expected backend are one of ['pil', 'cv2'], but got {}"
                .format(backend))
        self.backend = backend

92 93 94
        self.mode = mode.lower()
        self.image_path = image_path
        if self.image_path is None:
K
Kaipeng Deng 已提交
95
            assert download, "image_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
96 97
            image_url = self.TRAIN_IMAGE_URL if mode == 'train' else self.TEST_IMAGE_URL
            image_md5 = self.TRAIN_IMAGE_MD5 if mode == 'train' else self.TEST_IMAGE_MD5
98
            self.image_path = _check_exists_and_download(
L
LielinJiang 已提交
99
                image_path, image_url, image_md5, self.NAME, download)
100 101 102

        self.label_path = label_path
        if self.label_path is None:
K
Kaipeng Deng 已提交
103
            assert download, "label_path is not set and downloading automatically is disabled"
L
LielinJiang 已提交
104 105
            label_url = self.TRAIN_LABEL_URL if self.mode == 'train' else self.TEST_LABEL_URL
            label_md5 = self.TRAIN_LABEL_MD5 if self.mode == 'train' else self.TEST_LABEL_MD5
106
            self.label_path = _check_exists_and_download(
L
LielinJiang 已提交
107
                label_path, label_url, label_md5, self.NAME, download)
108 109 110 111 112 113

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

114 115
        self.dtype = paddle.get_default_dtype()

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
                magic_lab, label_num = struct.unpack_from(magic_byte_lab,
                                                          lab_buf, offset_lab)
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
                    images = np.reshape(images_temp, (buffer_size, rows *
                                                      cols)).astype('float32')
                    offset_img += struct.calcsize(fmt_images)

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
163 164 165
        image = np.reshape(image, [28, 28])

        if self.backend == 'pil':
L
LielinJiang 已提交
166
            image = Image.fromarray(image.astype('uint8'), mode='L')
167

168 169
        if self.transform is not None:
            image = self.transform(image)
170 171 172 173

        if self.backend == 'pil':
            return image, label.astype('int64')

174
        return image.astype(self.dtype), label.astype('int64')
175 176 177

    def __len__(self):
        return len(self.labels)
L
LielinJiang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222


class FashionMNIST(MNIST):
    """
    Implementation `Fashion-MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ dataset.

    Args:
        image_path(str): path to image file, can be set None if
            :attr:`download` is True. Default None
        label_path(str): path to label file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' or 'test' mode. Default 'train'.
        download(bool): whether to download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default True
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
            
    Returns:
        Dataset: Fashion-MNIST Dataset.

    Examples:
        
        .. code-block:: python

            from paddle.vision.datasets import FashionMNIST

            mnist = FashionMNIST(mode='test')

            for i in range(len(mnist)):
                sample = mnist[i]
                print(sample[0].size, sample[1])
    """

    NAME = 'fashion-mnist'
    URL_PREFIX = 'https://dataset.bj.bcebos.com/fashion_mnist/'
    TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
    TEST_IMAGE_MD5 = 'bef4ecab320f06d8554ea6380940ec79'
    TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
    TEST_LABEL_MD5 = 'bb300cfdad3c16e7a12a480ee83cd310'
    TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
    TRAIN_IMAGE_MD5 = '8d4fb7e6c68d591d4c3dfef9ec88bf0d'
    TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
    TRAIN_LABEL_MD5 = '25c81989df183df01b3e8a0aad5dffbe'