mnist.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import gzip
import struct
import numpy as np
21
from PIL import Image
22

23
import paddle
24
from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

__all__ = ["MNIST"]

URL_PREFIX = 'https://dataset.bj.bcebos.com/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'


class MNIST(Dataset):
    """
K
Kaipeng Deng 已提交
42
    Implementation of `MNIST <http://yann.lecun.com/exdb/mnist/>`_ dataset
43 44 45 46 47 48 49

    Args:
        image_path(str): path to image file, can be set None if
            :attr:`download` is True. Default None
        label_path(str): path to label file, can be set None if
            :attr:`download` is True. Default None
        mode(str): 'train' or 'test' mode. Default 'train'.
K
Kaipeng Deng 已提交
50 51
        download(bool): whether to download dataset automatically if
            :attr:`image_path` :attr:`label_path` is not set. Default True
52 53 54 55 56
        backend(str, optional): Specifies which type of image to be returned: 
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}. 
            If this option is not set, will get backend from ``paddle.vsion.get_image_backend`` ,
            default backend is 'pil'. Default: None.
            
57 58 59 60 61 62 63
    Returns:
        Dataset: MNIST Dataset.

    Examples:
        
        .. code-block:: python

64
            from paddle.vision.datasets import MNIST
65 66 67 68 69

            mnist = MNIST(mode='test')

            for i in range(len(mnist)):
                sample = mnist[i]
70
                print(sample[0].size, sample[1])
71 72 73 74 75 76 77 78

    """

    def __init__(self,
                 image_path=None,
                 label_path=None,
                 mode='train',
                 transform=None,
79 80
                 download=True,
                 backend=None):
81 82
        assert mode.lower() in ['train', 'test'], \
                "mode should be 'train' or 'test', but got {}".format(mode)
83 84 85 86 87 88 89 90 91

        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
                "Expected backend are one of ['pil', 'cv2'], but got {}"
                .format(backend))
        self.backend = backend

92 93 94
        self.mode = mode.lower()
        self.image_path = image_path
        if self.image_path is None:
K
Kaipeng Deng 已提交
95
            assert download, "image_path is not set and downloading automatically is disabled"
96 97 98 99 100 101 102
            image_url = TRAIN_IMAGE_URL if mode == 'train' else TEST_IMAGE_URL
            image_md5 = TRAIN_IMAGE_MD5 if mode == 'train' else TEST_IMAGE_MD5
            self.image_path = _check_exists_and_download(
                image_path, image_url, image_md5, 'mnist', download)

        self.label_path = label_path
        if self.label_path is None:
K
Kaipeng Deng 已提交
103 104 105
            assert download, "label_path is not set and downloading automatically is disabled"
            label_url = TRAIN_LABEL_URL if self.mode == 'train' else TEST_LABEL_URL
            label_md5 = TRAIN_LABEL_MD5 if self.mode == 'train' else TEST_LABEL_MD5
106 107 108 109 110 111 112 113
            self.label_path = _check_exists_and_download(
                label_path, label_url, label_md5, 'mnist', download)

        self.transform = transform

        # read dataset into memory
        self._parse_dataset()

114 115
        self.dtype = paddle.get_default_dtype()

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def _parse_dataset(self, buffer_size=100):
        self.images = []
        self.labels = []
        with gzip.GzipFile(self.image_path, 'rb') as image_file:
            img_buf = image_file.read()
            with gzip.GzipFile(self.label_path, 'rb') as label_file:
                lab_buf = label_file.read()

                step_label = 0
                offset_img = 0
                # read from Big-endian
                # get file info from magic byte
                # image file : 16B
                magic_byte_img = '>IIII'
                magic_img, image_num, rows, cols = struct.unpack_from(
                    magic_byte_img, img_buf, offset_img)
                offset_img += struct.calcsize(magic_byte_img)

                offset_lab = 0
                # label file : 8B
                magic_byte_lab = '>II'
                magic_lab, label_num = struct.unpack_from(magic_byte_lab,
                                                          lab_buf, offset_lab)
                offset_lab += struct.calcsize(magic_byte_lab)

                while True:
                    if step_label >= label_num:
                        break
                    fmt_label = '>' + str(buffer_size) + 'B'
                    labels = struct.unpack_from(fmt_label, lab_buf, offset_lab)
                    offset_lab += struct.calcsize(fmt_label)
                    step_label += buffer_size

                    fmt_images = '>' + str(buffer_size * rows * cols) + 'B'
                    images_temp = struct.unpack_from(fmt_images, img_buf,
                                                     offset_img)
                    images = np.reshape(images_temp, (buffer_size, rows *
                                                      cols)).astype('float32')
                    offset_img += struct.calcsize(fmt_images)

                    for i in range(buffer_size):
                        self.images.append(images[i, :])
                        self.labels.append(
                            np.array([labels[i]]).astype('int64'))

    def __getitem__(self, idx):
        image, label = self.images[idx], self.labels[idx]
163 164 165 166 167
        image = np.reshape(image, [28, 28])

        if self.backend == 'pil':
            image = Image.fromarray(image, mode='L')

168 169
        if self.transform is not None:
            image = self.transform(image)
170 171 172 173

        if self.backend == 'pil':
            return image, label.astype('int64')

174
        return image.astype(self.dtype), label.astype('int64')
175 176 177

    def __len__(self):
        return len(self.labels)