inference_transpiler.py 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
X
Xin Pan 已提交
18
import sys
19
import numpy as np
20 21 22
from .. import core
from ..framework import Program
from ..executor import global_scope
23 24


25
class InferenceTranspiler(object):
L
Luo Tao 已提交
26
    '''
27 28 29 30 31 32
    Convert the fluid program to optimized inference program.

    There are several optimizations:

      - fuse convolution and batch normalization
      - fuse batch normalization and relu (MKLDNN only)
L
Luo Tao 已提交
33 34

    Examples:
35

L
Luo Tao 已提交
36 37 38 39 40 41 42 43 44
    .. code-block:: python

        # As InferenceTranspiler will modify the original program,
        # please clone before use it.
        inference_transpiler_program = program.clone()
        t = fluid.InferenceTranspiler()
        t.transpile(inference_transpiler_program, place)
    '''

L
Luo Tao 已提交
45
    def transpile(self, program, place, scope=None):
46
        '''
L
Luo Tao 已提交
47 48 49 50 51 52
        Run the transpiler.

        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope|None): inference Scope
L
Luo Tao 已提交
53
        '''
X
polish  
Xin Pan 已提交
54 55 56
        sys.stderr.write("InferenceTranspiler is deprecated since it's not "
                         "safe. Users should be "
                         "responsible for constructing the inference program\n")
L
Luo Tao 已提交
57 58 59 60 61 62 63
        if not isinstance(program, Program):
            raise TypeError("program should be as Program type")
        if not isinstance(place, core.CPUPlace) and not isinstance(
                place, core.CUDAPlace):
            raise TypeError("place should be as CPUPlace/CUDAPlace type")
        if scope is None:
            scope = global_scope()
S
sneaxiy 已提交
64
        if not isinstance(scope, core._Scope):
L
Luo Tao 已提交
65
            raise TypeError("scope should be as Scope type or None")
66
        use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False))
M
Michal Gallus 已提交
67

68 69 70
        if use_mkldnn:
            self._depthwise_conv_mkldnn(program)

71
        self._fuse_batch_norm(program, place, scope)
72 73
        if use_mkldnn:
            self._fuse_conv_bias_mkldnn(program)
M
Michal Gallus 已提交
74
            self._fuse_conv_relu_mkldnn(program)
75 76 77
            self._fuse_conv_eltwise_mkldnn(program)
            self._fuse_conv_relu_mkldnn(
                program)  # ResNet residual block merging
M
Michal Gallus 已提交
78 79
            self._fuse_bn_relu_mkldnn(program)

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        self._is_test_pass(program)

    def _is_test_pass(self, program):
        '''
        Transpile the program setting is_test = true for all layers and
        inserts is_test attribute to pooling and activation layers.
        As a result some operators might run faster
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.has_attr("is_test"):
                current_op._set_attr("is_test", True)
            elif current_op.type in [
                    "pool2d", "sigmoid", "logsigmoid", "softshrink", "exp",
                    "brelu", "pow", "leaky_relu", "stanh", "relu", "tanh",
                    "tanh_shrink", "sqrt", "abs", "ceil", "elu", "floor", "cos",
                    "sin", "round", "reciprocal", "hard_shrink", "hard_sigmoid",
                    "relu6", "soft_relu", "swish", "thresholded_relu", "log",
                    "square", "softplus", "softsign"
            ]:
                current_op._set_attr("is_test", True)
            i = i + 1
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def _depthwise_conv_mkldnn(self, program):
        '''
        Transpile the program by replacing depthwise_conv2d to conv2d for MKLDNN program.
        The result is:
            - before:
                - any_other_op->depthwise_conv->any_other_op
            - after:
                - any_other_op->conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type == 'depthwise_conv2d':
                current_op.desc.set_type("conv2d")
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

137 138 139 140
    def _fuse_conv_eltwise_mkldnn(self, program):
        '''
        Transpile the program fusing elementwise_add into conv for MKLDNN
        program. Elementwise add following convolution OP can be fused by adding
141
        'fuse_residual_connection' attribute to convolution OP and replacing its output
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        Tensor with second parameter of elementwise_add.
        The result of fuse is:
            - before:
                - conv->elementwise_add->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'elementwise_add':
159 160
                    self._fuse_conv_eltwise(i, current_op, next_op)
                    self.block._remove_op(i + 1)  # Remove old conv
161 162 163 164 165 166 167 168 169
                    self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1
        self._adjust_input()
        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

M
Michal Gallus 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def _fuse_conv_relu_mkldnn(self, program):
        '''
        Transpile the program by fused relu activation for MKLDNN program.
        Relu activation following convolution OP can be fused by adding
        'fuse_relu' attribute to convolution OP.
        The result of fuse is:
            - before:
                - conv->relu->any_other_op
            - after:
                - conv->any_other_op
        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops):
            current_op = self.block.ops[i]
            if current_op.type in ['conv2d']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
191
                    # modify bnorm OP to include relu
K
Krzysztof Binias 已提交
192
                    current_op._set_attr("fuse_relu", True)
193
                    # remove relu OP
M
Michal Gallus 已提交
194 195 196 197 198 199 200
                    self.block._remove_op(i + 1)
            i = i + 1

        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
201

M
Michal Gallus 已提交
202
    def _fuse_bn_relu_mkldnn(self, program):
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        '''
        Transpile the program by fused relu activation for MKLDNN program.

        Relu activation following batch norm OP can be fused by adding
        :math:`fuse_with_relu` attribute to batch norm OP.

        The result of fuse is:

        - before:

          - batch_norm->relu->any_other_op

        - after:

          - batch_norm->any_other_op

        :param program: program to transpile
        :type program: Program
        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 1:
            current_op = self.block.ops[i]
            if current_op.type in ['batch_norm']:
                next_op = self.block.ops[i + 1]
                if next_op.type == 'relu':
                    # modify bnorm OP to include relu
W
Wu Yi 已提交
231
                    current_op._set_attr("fuse_with_relu", True)
232
                    # remove relu OP
W
Wu Yi 已提交
233
                    self.block._remove_op(i + 1)
234 235 236 237 238 239 240
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()
L
Luo Tao 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def _fuse_conv_bias_mkldnn(self, program):
        '''
        Transpile the program by fused convolution and elementwise_add.

        Replace conv2d and elementwise_add ops with a new conv2d op
        based on an old conv2d op and the :math:`Bias` taken from
        elementwise_add.

        For input :math:`X`:

        - Conv process:            :math:`X = input * W`
        - Elementwise_add process: :math` X = X + bias`

        After fuse into one operation:

        .. math::

            X = input * W + bias

        The operator transformation is:

        - before:

          - conv->elementwise_add->any_other_op

        - after:

          - conv->any_other_op

        The transpile stages are:

        1. Extract bias and output variables from elementwise_add.
        2. Extract Input, Weight and attributes from conv op.
        3. Create a new convolution op based on extracted params.
        4. Remove old conv op.
        5. Remove elementwise_add.
        5. Remove unused variables.

        Args:
            program (Program): program to transpile

        '''
        self.block = program.block(0)

        i = 0
        while i < len(self.block.ops) - 2:
            current_op = self.block.ops[i]
            next_op = self.block.ops[i + 1]
            # conv2d with bias
            if current_op.type in ['conv2d'] and \
               next_op.type in ['elementwise_add']:
                self._fuse_conv_bias(i, current_op, next_op)
                self.block._remove_op(i + 1)  # Remove old conv
                self.block._remove_op(i + 1)  # Remove elementwise_add
            i = i + 1

        self._remove_unused_var()
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
        # And a better solution will be considered later.
        program = program.clone()

W
Wu Yi 已提交
304
    def _fuse_batch_norm(self, program, place, scope):
L
Luo Tao 已提交
305 306
        '''
        Transpile the program by fused batch normalization.
307 308 309

        The batch normalization followed the convolution or fully connected layer
        can be integrated with them. Doing so will give us a forward acceleration,
310
        especially in environments like mobile or embedded.
311

L
Luo Tao 已提交
312 313
        For input :math:`X`:

314 315
        - Conv process:        :math:`X = input * W + bias`
        - Batch norm process:  :math:`X' = (X - mean) / std`
L
Luo Tao 已提交
316
        - Scale Process:       :math:`Y = a * X' + b`
317 318 319

        After fuse into one operation:

L
Luo Tao 已提交
320 321 322 323
        .. math::

            Y &= (input * W + bias - mean) / std * a + b \\\\
              &= input * a * W / std + ((bias - mean) / std * a + b)
324

325
        The operator transformation is:
L
Luo Tao 已提交
326

327
        - before:
L
Luo Tao 已提交
328

329 330
          - conv->batch_norm->any_other_op (bias == 0)
          - conv->elementwise_add->batch_norm->any_other_op (bias != 0)
331 332

        - after:
L
Luo Tao 已提交
333

334
          - conv->elementwise_add->any_other_op
335

336
        The transpile stages are:
L
Luo Tao 已提交
337

338
        1. insert elementwise_add op when bias == 0.
339
        2. fuse the batch_norm's parameters to conv and elementwise_add operators.
340 341 342
        3. remove batch_norm ops which are not used in any other ops.
        4. adjust the input of any_other_op to be the output of elementwise_add operator.
        5. remove unused variables.
343

L
Luo Tao 已提交
344 345 346 347
        Args:
            program (Program): program to transpile
            place (Place): inference place
            scope (Scope): inference Scope
348

349 350 351
        '''
        self.scope = scope
        self.place = place
352
        self.block = program.block(0)
353
        self.input_map = {}  # store the input names should be adjusted
354

355
        i = 0
356
        while i < len(self.block.ops) - 2:
357
            current_op = self.block.ops[i]
358
            # TODO(luotao1): consider only conv2d now. fc would be delt later.
359
            if current_op.type in ['conv2d']:
360 361
                # TODO(luotao1): consider single chain network now.
                # For branch network, we counldn't use block.ops[i + 1] as
L
Luo Tao 已提交
362
                # the judgment condition.
363
                next_op = self.block.ops[i + 1]
364
                # conv2d without bias
365
                if (next_op.type == 'batch_norm'):
366 367 368
                    # insert bias op
                    bias_op = self._insert_bias_op(i + 1, current_op, next_op)
                    # fuse batch_norm
369
                    self._fuse_param(current_op, next_op, bias_op, 0)
370
                    # remove batch_norm_op
W
Wu Yi 已提交
371
                    self.block._remove_op(i + 2)
372
                    i = i + 1
373 374 375 376 377 378 379
                # conv2d with bias, the next_op.type is elementwise_add
                elif (next_op.type == 'elementwise_add'):
                    next_next_op = self.block.ops[i + 2]
                    if (next_next_op.type == 'batch_norm'):
                        # fuse batch_norm
                        self._fuse_param(current_op, next_next_op, next_op, 1)
                        # remove batch_norm_op
W
Wu Yi 已提交
380
                        self.block._remove_op(i + 2)
381
                        i = i + 1
382
            i = i + 1
383
        self._adjust_input()
384
        self._remove_unused_var()
385 386
        # TODO(luotao): use clone() method to flush the program.desc in force,
        # since some large program.desc will not be flushed immediately.
L
Luo Tao 已提交
387
        # And a better solution will be considered later.
L
Luo Tao 已提交
388
        program = program.clone()
389 390 391 392

    # ====================== private transpiler functions =====================
    def _insert_bias_op(self, index, current_op, bn_op):
        '''
393
        Construct elementwise_add operator for adding bias
394
        and insert it into program.
395

396 397 398 399 400 401 402 403 404 405 406
        :param index: insert location of bias_op
        :type index: Int
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :return: bias_op
        :rtype: Operator
        '''
        # The input of bias_op is current_op's output and Bias of bn_op
        # The output of bias_op is bn_op's output
407 408 409 410
        x_var = self.block.var(current_op.output("Output")[0])
        y_var = self.block.var(bn_op.input("Bias")[0])
        out_var = self.block.var(bn_op.output("Y")[0])

W
Wu Yi 已提交
411
        bias_op = self.block._insert_op(
412 413 414 415 416 417
            index,
            type="elementwise_add",
            inputs={"X": x_var,
                    "Y": y_var},
            outputs={"Out": out_var},
            attrs={"axis": 1})  # dim_start=1
418 419
        return bias_op

420
    def _fuse_param(self, current_op, bn_op, bias_op, with_bias):
421 422
        '''
        fuse the batch_norm_op' parameters to current_op (conv or fc)
423

424 425 426 427 428 429
        :param current_op: current operator (conv or fc)
        :type current_op: Operator
        :param bn_op: batch norm operator
        :type bn_op: Operator
        :param bias_op: elementwise_add operator for adding bias
        :type bias_op: Operator
430
        :param with_bias: If current operator has bias, with_bias = 1; otherwise 0.
431
        :type with_bias: Int
432 433
        '''

L
Luo Tao 已提交
434 435 436 437 438 439 440 441 442 443 444
        def _update_param(op, old_param_name, new_param):
            # For the sake of remaining the original variables the same as before,
            # create new variables in scope to store the new parameters.
            old_param_name = old_param_name[0]
            old_var = self.block.vars[old_param_name]
            new_param_name = old_param_name + '_fuse_bn'
            new_var = self.block.create_parameter(
                name=new_param_name.encode('ascii'),
                type=old_var.type,
                dtype=old_var.dtype,
                shape=old_var.shape)
W
Wu Yi 已提交
445
            op._rename_input(old_param_name, new_param_name)
L
Luo Tao 已提交
446 447 448 449
            self.scope.var(new_param_name)

            tensor = self.scope.find_var(new_param_name).get_tensor()
            tensor.set(np.array(new_param), self.place)
450 451

        def _load_param(param_name):
L
Luo Tao 已提交
452
            return np.array(self.scope.find_var(param_name[0]).get_tensor())
453 454 455 456 457 458 459 460 461 462 463 464

        bias_bn = _load_param(bn_op.input("Bias"))  #Bias
        scale_bn = _load_param(bn_op.input("Scale"))  #Scale
        mean_bn = _load_param(bn_op.input("Mean"))  #Mean
        var_bn = _load_param(bn_op.input("Variance"))  #Variance

        # TODO(luotao1): consider only conv2d now. fc would be delt later.
        current_param = _load_param(current_op.input("Filter"))
        std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5)))
        tmp = np.float32(np.divide(scale_bn, std_bn))

        # add bias of batch_norm_op to conv2d
465 466 467 468
        if with_bias:
            bias = _load_param(bias_op.input("Y"))
        else:
            bias = np.zeros(bias_bn.shape)
469 470 471 472 473 474 475 476 477
        bias = np.float32(
            np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn))

        # re-compute weight of conv2d
        tmp = tmp.reshape(tmp.shape[0], -1)
        dst_param = current_param.reshape((tmp.shape[0], -1))
        dst_param = np.float32(np.multiply(dst_param, tmp))
        dst_param = dst_param.reshape(current_param.shape)

L
Luo Tao 已提交
478 479 480
        # update parameters
        _update_param(current_op, current_op.input("Filter"), dst_param)
        _update_param(bias_op, bias_op.input("Y"), bias)
481

482 483 484
        # collect the renamed input
        self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
    def _fuse_conv_bias(self, index, conv_op, elementwise_add_op):
        '''
        fuse the conv op with elementwise_add

        :param index: index of the conv_op in ops list
        :type index: Int
        :param conv_op: convolution operator
        :type conv_op: Operator
        :param elementwise_add_op: convolution's bias operator
        :type elementwise_add_op: Operator
        '''

        bias_var = self.block.var(elementwise_add_op.input("Y")[0])
        out_var = self.block.var(elementwise_add_op.output("Out")[0])
        filter_var = self.block.var(conv_op.input("Filter")[0])
        in_var = self.block.var(conv_op.input("Input")[0])
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={"Input": in_var,
                    "Filter": filter_var,
                    "Bias": bias_var},
            outputs={"Output": out_var},
            attrs=attrs)

512
    def _fuse_conv_eltwise(self, index, conv_op, eltwise_op):
513 514 515 516 517 518 519 520 521
        '''
        fuse the conv op with elementwise_add

        :param conv_op: convolution operator
        :type conv_op: Operator
        :param eltwise_op: operator adding data from skip connection
        :type eltwise_op: Operator
        '''

522 523 524 525 526 527 528 529 530
        eltwise_input = "X"
        if eltwise_op.input("X")[0] == conv_op.output("Output")[0]:
            eltwise_input = "Y"

        residual_var = self.block.vars[eltwise_op.input(eltwise_input)[0]]
        out_var = self.block.vars[eltwise_op.output("Out")[0]]
        filter_var = self.block.vars[conv_op.input("Filter")[0]]
        in_var = self.block.vars[conv_op.input("Input")[0]]
        bias_var = self.block.vars[conv_op.input("Bias")[0]]
531

532
        conv_op._set_attr("fuse_residual_connection", True)
533 534 535 536 537 538 539 540 541 542 543 544 545
        attrs = {name: conv_op.attr(name) for name in conv_op.attr_names}

        self.block._insert_op(
            index,
            type="conv2d",
            inputs={
                "Input": in_var,
                "Filter": filter_var,
                "Bias": bias_var,
                "ResidualData": residual_var
            },
            outputs={"Output": out_var},
            attrs=attrs)
546

547
    def _adjust_input(self):
548 549 550 551
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            for input_arg in current_op.input_arg_names:
                if input_arg in self.input_map:
W
Wu Yi 已提交
552 553
                    current_op._rename_input(input_arg,
                                             self.input_map[input_arg])
554

555 556
    def _remove_unused_var(self):
        '''
557
        remove unused varibles in program
558 559
        '''
        args = []
560 561 562 563
        for i in range(len(self.block.ops)):
            current_op = self.block.ops[i]
            args += current_op.input_arg_names
            args += current_op.output_arg_names
564 565
        args = list(set(args))  # unique the input and output arguments

566
        for var in list(self.block.vars.keys()):
567
            if var not in args:
W
Wu Yi 已提交
568
                self.block._remove_var(var)