dense_tensor.cc 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/core/dense_tensor.h"

17 18 19 20 21
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"

22 23 24
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"

25 26 27 28 29 30 31 32
namespace paddle {
namespace framework {
extern void TensorCopy(const pten::DenseTensor& src,
                       const paddle::platform::Place& dst_place,
                       pten::DenseTensor* dst);
}
}

33 34
namespace pten {

35
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
36
    : meta_(meta),
37
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
38

39
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
40
    : meta_(std::move(meta)),
41
      storage_(make_intrusive<TensorStorage>(a, SizeOf(dtype()) * numel())) {}
42 43 44 45 46 47 48 49

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage,
                         const DenseTensorMeta& meta)
    : meta_(meta), storage_(std::move(storage)) {}

DenseTensor::DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta)
    : meta_(std::move(meta)), storage_(std::move(storage)) {}

50 51 52 53 54 55 56 57 58 59 60 61 62
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
63

64 65
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
66 67 68 69 70 71 72 73 74 75
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
  if (other.storage_ != nullptr && other.storage_->data_shared()) {
    storage_->set_data_shared(other.storage_->data_shared());
  }
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
76 77 78
  return *this;
}

79 80 81 82 83 84
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
  storage_.swap(other.storage_);
  return *this;
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
  return storage_.get() == b.storage_.get() && storage_.get() != nullptr;
}

void* DenseTensor::mutable_data(size_t request_bytes) {
  PADDLE_ENFORCE(
      valid(),
      paddle::platform::errors::PreconditionNotMet(
          "The meta data must be valid when call the mutable data function."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
105
  size_t bytes = numel() * SizeOf(dtype());
106 107 108 109 110 111 112 113 114 115
  if (request_bytes) {
    PADDLE_ENFORCE_GE(request_bytes,
                      bytes,
                      paddle::platform::errors::InvalidArgument(
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          request_bytes,
                          bytes));
    bytes = request_bytes;
  }
116
  if (storage_->size() < bytes + meta_.offset || storage_->size() == 0) {
117 118
    VLOG(10) << "mutbale data realloc, original size: " << storage_->size()
             << ", new size: " << bytes;
119
    storage_->Realloc(bytes);
120
    meta_.offset = 0;
121
  }
122 123
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
124 125 126 127
}

template <typename T>
T* DenseTensor::mutable_data() {
128 129 130
  // In order to be compatible with the original Tensor design and
  // execution system, we have to reset the datatype in mutable_data<T>.
  // When the compatibility phase is over in the future, we can delete it
131
  if (meta_.dtype == DataType::UNDEFINED) {
132 133
    VLOG(10) << "change data type in mutbale_data, target dtype - "
             << paddle::experimental::CppTypeToDataType<T>::Type();
134
    const_cast<DataType&>(meta_.dtype) =
135 136
        paddle::experimental::CppTypeToDataType<T>::Type();
  }
137
  PADDLE_ENFORCE(
138
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
139
      paddle::platform::errors::InvalidArgument(
140 141 142
          "The type of data (%d) we are trying to retrieve does not match the "
          "type of data currently contained in the container (%d).",
          static_cast<int>(paddle::experimental::CppTypeToDataType<T>::Type()),
143
          static_cast<int>(dtype())));
144 145 146 147 148
  return static_cast<T*>(mutable_data());
}

template <typename T>
const T* DenseTensor::data() const {
149
  check_memory_size();
150
  PADDLE_ENFORCE(
151
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
152
      paddle::platform::errors::InvalidArgument(
153 154 155 156 157
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
      paddle::platform::errors::InvalidArgument(
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
  return reinterpret_cast<T*>(data());
}

173
void* DenseTensor::data() {
174 175 176 177
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
178 179
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
180 181
}

182
const void* DenseTensor::data() const {
183 184 185 186
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
187 188
  return reinterpret_cast<const void*>(
      reinterpret_cast<uintptr_t>(storage_->data()) + meta_.offset);
189 190
}

191 192 193 194 195 196
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
                 paddle::platform::errors::InvalidArgument(
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
197 198
}

199 200 201 202 203 204 205 206 207 208
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
209
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
210
  meta_.dims = dims;
211 212 213
  if (storage_ != nullptr) {
    mutable_data();
  }
石晓伟 已提交
214 215
}

216 217
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

218 219 220 221
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template dtype* DenseTensor::mutable_data();     \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16);
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64);
DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);

#undef DATA_MEMBER_FUNC_INSTANTIATION

241 242 243 244
/* --------------------------- */
/*   From framework::Tensor    */
/* --------------------------- */
DenseTensor::DenseTensor() {
245 246
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
247 248 249 250 251 252
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = paddle::experimental::DataType::FLOAT32;
  meta_.offset = 0;
}

DenseTensor::DenseTensor(const paddle::framework::proto::VarType::Type& dtype) {
253 254
  storage_ = make_intrusive<paddle::experimental::SharedStorage>(
      paddle::platform::CPUPlace());
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  inplace_version_counter_ = std::make_shared<TensorInplaceVersion>(0);
  meta_.dtype = TransToPtenDataType(dtype);
  meta_.offset = 0;
}

size_t DenseTensor::memory_size() const {
  if (storage_ == nullptr || storage_->data_shared() == nullptr) {
    return 0UL;
  }

  return storage_->data_shared()->size() - meta_.offset;
}

void DenseTensor::check_memory_size() const {
  PADDLE_ENFORCE_NOT_NULL(storage_,
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  PADDLE_ENFORCE_NOT_NULL(storage_->data_shared(),
                          paddle::platform::errors::PreconditionNotMet(
                              "Tensor holds no memory. "
                              "Call Tensor::mutable_data firstly."));
  size_t size = numel() * SizeOf(dtype());

  PADDLE_ENFORCE_LE(
      size,
      memory_size(),
      paddle::platform::errors::PreconditionNotMet(
          "Tensor's dimension is out of bound."
          "Tensor's dimension must be equal or less than the size of its "
          "memory."
          "But received  Tensor's dimension is d%, memory's size is %d.",
          size,
          memory_size()));
}

const paddle::platform::Place& DenseTensor::place() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::place() is called."));
296 297 298
  if (storage_->data_shared()) {
    return storage_->data_shared()->place();
  }
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  return storage_->place();
}

paddle::framework::proto::VarType::Type DenseTensor::type() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor not initialized yet when Tensor::type() is called."));
  return TransToProtoVarType(meta_.dtype);
}

paddle::framework::proto::VarType::Type DenseTensor::saved_type() const {
  return TransToProtoVarType(meta_.dtype);
}

void DenseTensor::set_layout(const paddle::framework::DataLayout layout) {
  meta_.layout = layout;
}

void DenseTensor::ResetHolder(
    const std::shared_ptr<paddle::memory::Allocation>& holder) {
  PADDLE_ENFORCE_EQ(
      meta_.offset,
      0,
      paddle::platform::errors::Fatal(
          "Only the offset is supported to zero when the holder is reset."));

326 327 328 329
  PADDLE_ENFORCE_NOT_NULL(
      storage_,
      paddle::platform::errors::PreconditionNotMet(
          "The storage must be valid when call the mutable data function."));
330 331 332 333

  if (storage_->data_shared()) {
    PADDLE_ENFORCE_LE(
        numel() * SizeOf(dtype()) + meta_.offset,
334
        holder->size(),
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        paddle::platform::errors::InvalidArgument(
            "The size of Holder is not enough to store the Tensor."));
  }

  storage_->set_data_shared(holder);
}

void DenseTensor::ResetHolderWithType(
    const std::shared_ptr<paddle::memory::Allocation>& holder,
    const paddle::framework::proto::VarType::Type& type) {
  set_type(type);
  ResetHolder(holder);
}

void DenseTensor::set_type(
    const paddle::framework::proto::VarType::Type& type) {
  meta_.dtype = TransToPtenDataType(type);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                size_t requested_size) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());
  if (requested_size && (requested_size > size)) {
    size = requested_size;
  }

  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

  /* some versions of boost::variant don't have operator!= */
  if (storage_->data_shared() == nullptr ||
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size));
    meta_.offset = 0;
  }
383 384
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                size_t requested_size) {
  return mutable_data(place, type(), requested_size);
}

void* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                paddle::framework::proto::VarType::Type type,
                                const paddle::platform::Stream& stream) {
  set_type(type);
  PADDLE_ENFORCE_GE(
      numel(),
      0,
      paddle::platform::errors::PreconditionNotMet(
          "The Tensor's element number must be equal or greater than zero. "
          "The Tensor's shape is [",
          dims(),
          "] now"));
  size_t size = numel() * SizeOf(dtype());

406 407 408 409
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(place);
  }

410
  /* some versions of boost::variant don't have operator!= */
411
  if (storage_->data_shared() == nullptr ||
412 413 414 415 416 417 418 419
      !(storage_->data_shared()->place() == place) ||
      storage_->data_shared()->size() < size + meta_.offset ||
      !(paddle::platform::is_gpu_place(place) &&
        paddle::memory::InSameStream(storage_->data_shared(), stream))) {
    storage_->Clear();
    storage_->set_data_shared(paddle::memory::AllocShared(place, size, stream));
    meta_.offset = 0;
  }
420 421
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(storage_->data()) +
                                 meta_.offset);
422 423 424 425 426 427 428 429 430 431 432 433
}

/* @jim19930609: The following "mutable_data" only supports specific dtypes
   defined in OpProto. This part need another clean up once the data type across
   Fluid
   and Pten get unified.
   */
template <typename T>
inline T* DenseTensor::mutable_data(const DDim& dims,
                                    const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
434
  meta_.dims = dims;
435 436 437 438 439 440 441 442 443 444 445
  return mutable_data<T>(place, requested_size);
}

template <typename T>
inline T* DenseTensor::mutable_data(const paddle::platform::Place& place,
                                    size_t requested_size) {
  static_assert(std::is_pod<T>::value, "T must be POD");
  return reinterpret_cast<T*>(mutable_data(
      place, paddle::framework::DataTypeTrait<T>::DataType(), requested_size));
}

446
void DenseTensor::ShareBufferWith(const DenseTensor& tensor) {
B
Baibaifan 已提交
447 448 449 450
  if (storage_ == nullptr) {
    storage_ = make_intrusive<paddle::experimental::SharedStorage>(
        paddle::platform::CPUPlace());
  }
451 452 453 454 455 456
  if (storage_ != nullptr && tensor.storage_ != nullptr) {
    storage_->set_data_shared(tensor.storage_->data_shared());
  }
  meta_.offset = tensor.meta().offset;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
  template dtype* DenseTensor::mutable_data(         \
      const DDim& dims,                              \
      const paddle::platform::Place& place,          \
      size_t requested_size);                        \
  template dtype* DenseTensor::mutable_data(         \
      const paddle::platform::Place& place, size_t requested_size);

LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(bool)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(uint8_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int16_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(int64_t)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(float)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(double)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::bfloat16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::platform::float16)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex64)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128)

#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION

/* ------------------------------ */
/*   From framework::LoDTensor    */
/* ------------------------------ */

DenseTensor::DenseTensor(const LoD& lod) : DenseTensor() { meta_.lod = lod; }

void DenseTensor::set_lod(const LoD& lod) { meta_.lod = lod; }

LoD* DenseTensor::mutable_lod() { return &meta_.lod; }

std::pair<size_t, size_t> DenseTensor::lod_element(size_t level,
                                                   size_t elem) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  PADDLE_ENFORCE_LT(elem,
                    NumElements(level),
                    paddle::platform::errors::InvalidArgument(
                        "The input element of LoD is invalid, it should be "
                        "less than the number of elements in its level."
                        "The input element is %zu, the number of elements in "
                        "its level is %zu.",
                        elem,
                        NumElements(level)));

  return std::make_pair((meta_.lod)[level][elem], (meta_.lod)[level][elem + 1]);
}

size_t DenseTensor::NumLevels() const { return meta_.lod.size(); }

size_t DenseTensor::NumElements(size_t level) const {
  PADDLE_ENFORCE_LT(
      level,
      NumLevels(),
      paddle::platform::errors::InvalidArgument(
          "The input level of LoD is invalid, it should be less than LoD "
          "size. The input level is %zu, the LoD size is %zu.",
          level,
          NumLevels()));

  // the last offset is the end of last element
  return (meta_.lod)[level].size() - 1;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
DenseTensor& DenseTensor::Resize(const DDim& dims) {
  meta_.dims = dims;
  return *this;
}

DenseTensor DenseTensor::Slice(int64_t begin_idx, int64_t end_idx) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(begin_idx,
                    0,
                    paddle::platform::errors::OutOfRange(
                        "The start row index must be greater than 0."
                        "But received the start index is d%.",
                        begin_idx));
  PADDLE_ENFORCE_LE(end_idx,
                    meta_.dims[0],
                    paddle::platform::errors::OutOfRange(
                        "The end row index is out of bound."));
  PADDLE_ENFORCE_LT(
      begin_idx,
      end_idx,
      paddle::platform::errors::InvalidArgument(
          "The start row index must be less than the end row index."
          "But received the start index = %d, the end index = %d.",
          begin_idx,
          end_idx));

  if (meta_.dims[0] == 1) {
    return *this;
  } else {
    size_t base = numel() / meta_.dims[0];
    DenseTensor dst;
    dst.storage_ = pten::make_intrusive<paddle::experimental::SharedStorage>(
        storage_->data_shared());
    dst.meta_.layout = meta_.layout;
    dst.meta_.dtype = meta_.dtype;
    DDim dst_dims = meta_.dims;
    dst_dims[0] = end_idx - begin_idx;
    dst.Resize(dst_dims);
    dst.meta_.offset = meta_.offset + begin_idx * base * SizeOf(dtype());
    return dst;
  }
}

std::vector<DenseTensor> DenseTensor::Split(int64_t split_size,
                                            int64_t axis) const {
  check_memory_size();

  PADDLE_ENFORCE_GE(meta_.dims.size(),
                    0,
                    paddle::platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));

  PADDLE_ENFORCE_GE(
      split_size,
      0,
      paddle::platform::errors::OutOfRange(
          "split expects split_size be non-negative, but got split_size is %d",
          split_size));

  int64_t numel_size = meta_.dims[axis];

  int64_t num_splits = 1;
  if (split_size != 0) {
    num_splits =
        std::max<int64_t>((numel_size + split_size - 1) / split_size, 1);
  }

  std::vector<DenseTensor> splits(num_splits);
  int64_t last_split_size = split_size - (split_size * num_splits - numel_size);

  for (int64_t i = 0; i < num_splits; ++i) {
    int64_t length = i < num_splits - 1 ? split_size : last_split_size;
    splits[i] = Slice(i * split_size, i * split_size + length);
  }
  return splits;
}

std::vector<DenseTensor> DenseTensor::Chunk(int64_t chunks,
                                            int64_t axis) const {
  check_memory_size();
  PADDLE_ENFORCE_GE(meta_.dims.size(),
                    0,
                    paddle::platform::errors::OutOfRange(
                        "split expects at least a 1-dimensional tensor"));
  PADDLE_ENFORCE_GE(
      chunks,
      0,
      paddle::platform::errors::OutOfRange(
          "chunks expects to be greater than 0, but got chunks is %d", chunks));

  int64_t numel_size = meta_.dims[axis];
  int64_t split_size = (numel_size + chunks - 1) / chunks;
  return Split(split_size, axis);
}

DenseTensor& DenseTensor::ShareDataWith(const DenseTensor& src) {
  src.check_memory_size();
  // Preserve LoD
  auto lod = meta_.lod;
  *this = src;
  meta_.lod = lod;
  return *this;
}

DenseTensor& DenseTensor::ShareInplaceVersionCounterWith(
    const DenseTensor& src) {
  PADDLE_ENFORCE_NOT_NULL(
      inplace_version_counter_,
      paddle::platform::errors::PreconditionNotMet(
          "Tensor does not hold inplace_version_counter_."));

  inplace_version_counter_ = src.inplace_version_counter_;
  return *this;
}

645
}  // namespace pten