gradient_merge_optimizer.py 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle.fluid.optimizer import GradientMergeOptimizer as GM
from .meta_optimizer_base import MetaOptimizerBase


class GradientMergeOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(GradientMergeOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
22
        self.wrapped_opt = None
23 24 25 26
        self.meta_optimizers_white_list = [
            "LarsOptimizer",
            "LambOptimizer",
            "GraphExecutionOptimizer",
27
            "RecomputeOptimizer",
28 29
        ]
        self.meta_optimizers_black_list = []
30 31 32 33 34

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(GradientMergeOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
35 36 37 38

    def _init_wrapped_opt(self):
        config = self.user_defined_strategy.gradient_merge_configs
        self.wrapped_opt = GM(self.inner_opt)
39 40 41 42 43 44
        self.wrapped_opt._set_k_steps(
            self.user_defined_strategy.gradient_merge_configs["k_steps"])
        self.wrapped_opt._set_avg(
            self.user_defined_strategy.gradient_merge_configs["avg"])

    def _can_apply(self):
45 46 47
        if not self.role_maker._is_collective:
            return False

48
        can_apply = (self.user_defined_strategy.gradient_merge == True) and \
49
            self.user_defined_strategy.gradient_merge_configs["k_steps"] > 1
50 51 52 53
        return can_apply

    def _disable_strategy(self, dist_strategy):
        dist_strategy.gradient_merge = False
54
        dist_strategy.gradient_merge_configs = {}
55

56
    def _enable_strategy(self, dist_strategy, context):
57
        # we currently do not support auto-enable GradientMerge
58 59
        return

60 61 62 63 64
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
65
        self._init_wrapped_opt()
66 67 68 69
        optimize_ops, params_grads = \
            self.wrapped_opt.minimize(loss, startup_program,
                                      parameter_list, no_grad_set)
        return optimize_ops, params_grads