# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle.fluid.optimizer import GradientMergeOptimizer as GM from .meta_optimizer_base import MetaOptimizerBase class GradientMergeOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(GradientMergeOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.wrapped_opt = None self.meta_optimizers_white_list = [ "LarsOptimizer", "LambOptimizer", "GraphExecutionOptimizer", "RecomputeOptimizer", ] self.meta_optimizers_black_list = [] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(GradientMergeOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) def _init_wrapped_opt(self): config = self.user_defined_strategy.gradient_merge_configs self.wrapped_opt = GM(self.inner_opt) self.wrapped_opt._set_k_steps( self.user_defined_strategy.gradient_merge_configs["k_steps"]) self.wrapped_opt._set_avg( self.user_defined_strategy.gradient_merge_configs["avg"]) def _can_apply(self): if not self.role_maker._is_collective: return False can_apply = (self.user_defined_strategy.gradient_merge == True) and \ self.user_defined_strategy.gradient_merge_configs["k_steps"] > 1 return can_apply def _disable_strategy(self, dist_strategy): dist_strategy.gradient_merge = False dist_strategy.gradient_merge_configs = {} def _enable_strategy(self, dist_strategy, context): # we currently do not support auto-enable GradientMerge return def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self._init_wrapped_opt() optimize_ops, params_grads = \ self.wrapped_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads